Fury项目与Protocol Buffers的性能基准测试对比分析
2025-06-25 06:26:03作者:劳婵绚Shirley
概述
在数据序列化领域,性能始终是开发者关注的核心指标之一。Apache Fury作为一个新兴的高性能序列化框架,与Google Protocol Buffers(protobuf)这一业界广泛使用的序列化方案相比,其性能表现如何?本文将通过技术角度深入分析两者的性能差异。
测试环境与基准
Fury项目在其Java实现中提供了专门的性能测试套件,其中包含了对protobuf的对比测试。测试主要聚焦于以下几个方面:
- 序列化/反序列化速度:衡量处理数据的时间效率
- 序列化后数据大小:评估空间占用效率
- 内存使用情况:检测处理过程中的内存开销
测试用例设计
测试用例选择了典型的用户数据类型(UserType)作为基准,这种类型通常包含:
- 基本数据类型字段
- 字符串类型字段
- 集合类型字段
- 嵌套对象字段
这种设计能够全面评估框架对各种数据结构的处理能力。
性能差异分析
根据测试结果,可以观察到以下关键差异:
-
序列化速度:
- Fury在大多数场景下展现出更快的序列化速度
- 对于复杂嵌套对象,优势更为明显
-
反序列化速度:
- Fury采用零拷贝技术,反序列化速度显著提升
- protobuf需要完整的解析过程,耗时较长
-
数据大小:
- Fury生成的二进制数据通常更紧凑
- protobuf由于包含字段描述信息,体积略大
-
内存占用:
- Fury在序列化过程中内存分配更高效
- protobuf需要额外的内存用于构建中间表示
技术实现差异
性能差异源于两者的架构设计不同:
-
Fury:
- 采用基于JIT的动态代码生成技术
- 支持零拷贝反序列化
- 优化的内存布局和访问模式
-
Protocol Buffers:
- 基于静态生成的代码
- 需要完整的解析过程
- 更强调跨语言兼容性而非极致性能
适用场景建议
根据测试结果,可以给出以下使用建议:
-
推荐使用Fury的场景:
- 对性能要求极高的内部服务通信
- Java生态内的数据交换
- 大数据量、高频次的序列化需求
-
推荐使用protobuf的场景:
- 需要多语言支持的分布式系统
- 对协议稳定性要求高的长期存储
- 需要严格向后兼容的场景
结论
Fury在纯Java环境下展现出比protobuf更优的性能表现,特别是在处理复杂对象和大量数据时优势明显。然而,protobuf凭借其成熟的跨语言支持和稳定性,在需要广泛兼容性的场景中仍是更稳妥的选择。开发者应根据具体需求权衡选择最适合的序列化方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
717
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460