XenonRecomp项目:Spider-Man Edge of Time游戏TOML文件生成问题解析
问题背景
在XenonRecomp项目中,用户尝试为《Spider-Man Edge of Time》游戏生成TOML文件时遇到了困难。TOML文件是XenonAnalyse工具输出的关键文件,包含了游戏的跳转表信息,对后续的反编译工作至关重要。用户报告称工具要么完全不生成任何文件,要么只生成空白的TOML文件。
问题分析
通过分析用户提供的日志和技术讨论,可以确定问题可能由以下几个因素导致:
-
路径格式问题:用户在命令行中使用了方括号包裹路径,这可能导致工具无法正确解析文件路径。Windows命令行中路径包含空格时,正确的做法是使用引号而非方括号。
-
跳转表模式识别失败:XenonAnalyse工具依赖特定的指令模式来识别游戏中的跳转表。不同游戏可能使用不同的指令序列来实现跳转功能,如果工具内置的模式与游戏实际使用的模式不匹配,就无法正确识别跳转表。
-
基地址读取问题:工具需要正确读取游戏的基地址才能进行后续分析,如果这一步失败,整个分析过程就会中断。
解决方案
1. 路径格式修正
首先应确保命令行参数格式正确。正确的调用方式应该是:
XenonAnalyse "C:\完整路径\Default.xex" "C:\输出路径\output.toml"
避免使用方括号,且路径中包含空格时必须使用引号。
2. 跳转表模式适配
对于跳转表识别问题,需要进行以下步骤:
- 使用反汇编工具(如IDA或Ghidra)分析游戏可执行文件
- 搜索常见的跳转表指令模式,如包含bctr指令的代码块
- 在XenonAnalyse的main.cpp文件中添加匹配的指令模式
典型的跳转表指令序列可能包含以下组合:
- lis, rlwinm, subi, lhzx
- lis, rlwinm, addi, lhzx
- bgt, lis, subi, lbzx
- bgt, lis, addi, lbzx
3. 基地址处理增强
在XenonUtils的xex.cpp文件中,可以添加额外的基地址处理逻辑。例如,当标准方法无法获取基地址时,可以尝试从特定内存区域读取或使用备用计算方法。
技术实现细节
在实际操作中,开发者需要:
- 在反汇编工具中定位跳转表,通常可以通过搜索switchD标签或bctr指令
- 分析跳转表周围的指令模式,记录完整的指令序列
- 将这些模式添加到XenonAnalyse的main.cpp文件中
- 重新编译工具并测试效果
对于《Spider-Man Edge of Time》这款游戏,经过分析发现它使用了多种不同的跳转表实现方式,包括:
- 绝对跳转表模式:
lis → rlwinm → addi → lwzx → mtspr → bctr
- 相对跳转表模式:
lis → rlwinm → subi → lhzx → lis → addi → ori → add → mtspr → bctr
- 带条件跳转的模式:
bgt → lis → addi → lbzx → rlwinm → lis → ori → subi → add → mtspr → bctr
总结
解决XenonRecomp项目中特定游戏的TOML生成问题需要结合正确的工具使用方法和深入的游戏二进制分析。关键在于理解工具的工作原理和游戏特定的实现方式,通过调整模式匹配逻辑来适应不同的游戏代码结构。对于初学者,建议从简单的游戏开始,逐步积累分析经验,再尝试处理更复杂的游戏如《Spider-Man Edge of Time》。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0294- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









