XenonRecomp项目:Spider-Man Edge of Time游戏TOML文件生成问题解析
问题背景
在XenonRecomp项目中,用户尝试为《Spider-Man Edge of Time》游戏生成TOML文件时遇到了困难。TOML文件是XenonAnalyse工具输出的关键文件,包含了游戏的跳转表信息,对后续的反编译工作至关重要。用户报告称工具要么完全不生成任何文件,要么只生成空白的TOML文件。
问题分析
通过分析用户提供的日志和技术讨论,可以确定问题可能由以下几个因素导致:
-
路径格式问题:用户在命令行中使用了方括号包裹路径,这可能导致工具无法正确解析文件路径。Windows命令行中路径包含空格时,正确的做法是使用引号而非方括号。
-
跳转表模式识别失败:XenonAnalyse工具依赖特定的指令模式来识别游戏中的跳转表。不同游戏可能使用不同的指令序列来实现跳转功能,如果工具内置的模式与游戏实际使用的模式不匹配,就无法正确识别跳转表。
-
基地址读取问题:工具需要正确读取游戏的基地址才能进行后续分析,如果这一步失败,整个分析过程就会中断。
解决方案
1. 路径格式修正
首先应确保命令行参数格式正确。正确的调用方式应该是:
XenonAnalyse "C:\完整路径\Default.xex" "C:\输出路径\output.toml"
避免使用方括号,且路径中包含空格时必须使用引号。
2. 跳转表模式适配
对于跳转表识别问题,需要进行以下步骤:
- 使用反汇编工具(如IDA或Ghidra)分析游戏可执行文件
- 搜索常见的跳转表指令模式,如包含bctr指令的代码块
- 在XenonAnalyse的main.cpp文件中添加匹配的指令模式
典型的跳转表指令序列可能包含以下组合:
- lis, rlwinm, subi, lhzx
- lis, rlwinm, addi, lhzx
- bgt, lis, subi, lbzx
- bgt, lis, addi, lbzx
3. 基地址处理增强
在XenonUtils的xex.cpp文件中,可以添加额外的基地址处理逻辑。例如,当标准方法无法获取基地址时,可以尝试从特定内存区域读取或使用备用计算方法。
技术实现细节
在实际操作中,开发者需要:
- 在反汇编工具中定位跳转表,通常可以通过搜索switchD标签或bctr指令
- 分析跳转表周围的指令模式,记录完整的指令序列
- 将这些模式添加到XenonAnalyse的main.cpp文件中
- 重新编译工具并测试效果
对于《Spider-Man Edge of Time》这款游戏,经过分析发现它使用了多种不同的跳转表实现方式,包括:
- 绝对跳转表模式:
lis → rlwinm → addi → lwzx → mtspr → bctr
- 相对跳转表模式:
lis → rlwinm → subi → lhzx → lis → addi → ori → add → mtspr → bctr
- 带条件跳转的模式:
bgt → lis → addi → lbzx → rlwinm → lis → ori → subi → add → mtspr → bctr
总结
解决XenonRecomp项目中特定游戏的TOML生成问题需要结合正确的工具使用方法和深入的游戏二进制分析。关键在于理解工具的工作原理和游戏特定的实现方式,通过调整模式匹配逻辑来适应不同的游戏代码结构。对于初学者,建议从简单的游戏开始,逐步积累分析经验,再尝试处理更复杂的游戏如《Spider-Man Edge of Time》。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00