ActionTech DBLE 分片配置详解:sharding.xml 全面解析
概述
在分布式数据库中间件 ActionTech DBLE 中,sharding.xml 是核心配置文件之一,负责定义分库分表规则、数据节点映射以及拆分算法等重要配置。本文将深入解析 sharding.xml 的配置结构和各项参数,帮助用户更好地理解和配置 DBLE 的分片功能。
配置文件结构
sharding.xml 文件由四个主要部分组成:
- schema:定义虚拟 schema 及其包含的表
- shardingNode:定义虚拟分片节点
- apNode:定义 OLAP 分析节点(用于 ClickHouse)
- function:定义各种拆分算法
schema 配置详解
schema 是 DBLE 中的逻辑数据库,可以映射到后端多个物理数据库。每个 schema 配置包含以下重要属性:
| 配置项 | 说明 | 默认值 | 注意事项 |
|---|---|---|---|
| name | schema 名称 | 无 | 必须唯一 |
| shardingNode | 关联的数据节点 | 无 | 可配置多个 |
| function | 默认拆分规则 | 无 | 需与 shardingNode 配合使用 |
| apNode | OLAP 分析节点 | 无 | 只能配置一个 |
| sqlMaxLimit | 结果集限制 | -1 | 仅对单表查询有效 |
| logicalCreateADrop | 允许逻辑创建/删除 | true | 实际不执行 DDL |
schema 下可定义三种表类型:
1. shardingTable(分片表)
分片表的主要配置参数:
| 参数 | 说明 | 必填 | 示例 |
|---|---|---|---|
| name | 表名 | 是 | "user,order" |
| shardingNode | 数据节点 | 是 | "dn$0-3" |
| shardingColumn | 分片列 | 是 | "user_id" |
| function | 分片算法 | 是 | "hash-mod" |
| incrementColumn | 自增列 | 否 | "id" |
| sqlRequiredSharding | 要求分片条件 | false | true/false |
2. globalTable(全局表)
全局表在所有节点上保持数据一致,配置参数:
| 参数 | 说明 | 必填 | 示例 |
|---|---|---|---|
| name | 表名 | 是 | "config" |
| shardingNode | 数据节点 | 是 | "dn1,dn2" |
| checkClass | 一致性检查类 | 否 | "CHECKSUM" |
| cron | 检查周期 | "0 0 0 * * ?" | Quartz 表达式 |
3. singleTable(单节点表)
单节点表只存储在一个节点上:
| 参数 | 说明 | 必填 | 示例 |
|---|---|---|---|
| name | 表名 | 是 | "log" |
| shardingNode | 数据节点 | 是 | "dn1" |
shardingNode 配置
shardingNode 定义虚拟分片节点与物理数据库的映射关系:
<shardingNode name="dn1" dbGroup="group1" database="db1" />
支持通配符配置:
<shardingNode name="dn$0-3" dbGroup="group$0-1" database="db$0-1" />
重要规则:
- name 数量 = dbGroup 数量 × database 数量
- 不同 shardingNode 不能有相同的 database 和 dbGroup 组合
- 不能与 apNode 重名
apNode 配置
apNode 专用于 OLAP 分析,指向 ClickHouse 节点:
<apNode name="ap1" dbGroup="ch_group" database="analytics" />
注意事项:
- 对应的 dbGroup 必须为 ClickHouse 类型
- 不能与 shardingNode 重名
- 通配符规则与 shardingNode 相同
function 拆分算法
DBLE 支持多种分片算法,通过 class 属性指定:
1. hash 分区算法
<function name="hash-mod" class="hash">
<property name="partitionCount">2,3</property>
<property name="partitionLength">100,50</property>
</function>
特点:
- 对数值取模分片
- 支持多区间配置
- 模数上限 2880(便于扩容)
2. stringhash 分区算法
<function name="str-hash" class="stringhash">
<property name="partitionCount">4</property>
<property name="partitionLength">1</property>
<property name="hashSlice">0:4</property>
</function>
特点:
- 对字符串子串计算 hash 值
- 通过 hashSlice 指定参与计算的子串
- 支持类似 hash 的多区间配置
3. enum 分区算法
<function name="enum-func" class="enum">
<property name="mapFile">enum-map.txt</property>
<property name="defaultNode">0</property>
<property name="type">1</property>
</function>
特点:
- 基于枚举值直接映射
- 支持字符串和数值类型
- 可配置默认节点
4. numberrange 分区算法
<function name="range-func" class="numberrange">
<property name="mapFile">range-map.txt</property>
<property name="defaultNode">0</property>
</function>
特点:
- 基于数值范围分片
- 区间可配置
- 支持默认节点
5. patternrange 分区算法
<function name="pattern-func" class="patternrange">
<property name="mapFile">pattern-map.txt</property>
<property name="patternValue">1024</property>
<property name="defaultNode">0</property>
</function>
特点:
- 先取模再按范围分片
- 结合 hash 和 range 的优点
- 适合周期性数据
6. date 分区算法
<function name="date-func" class="date">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2019-01-01</property>
<property name="sPartionDay">10</property>
<property name="defaultNode">0</property>
</function>
特点:
- 基于日期分片
- 可配置分区天数
- 支持日期格式化
最佳实践
-
命名规范:保持名称一致性,如 dn1, dn2... 或 group_a, group_b...
-
分片策略选择:
- 均匀分布选 hash
- 范围查询选 range
- 日期数据选 date
-
全局表控制:小表、配置表适合作为全局表
-
默认节点:为 enum 和 range 算法配置默认节点
-
通配符使用:大规模部署时使用通配符简化配置
常见问题
-
配置不生效:检查 user.xml 中是否配置了 shardingUser 或 hybridTAUser
-
节点重复:确保 shardingNode 和 apNode 的 name 不重复
-
算法限制:hash 算法模数不超过 2880
-
NULL 值处理:配置 defaultNode 处理 NULL 值
-
版本升级:修改配置前备份原文件
通过本文的详细解析,相信您已经对 DBLE 的 sharding.xml 配置有了全面了解。合理配置分片规则是分布式数据库性能优化的关键,建议根据实际业务特点选择最适合的分片策略。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00