Annotator Store 技术文档
1. 安装指南
1.1 环境要求
在开始安装 Annotator Store 之前,请确保您的系统满足以下要求:
- Python 2(>=2.6)或 Python 3(>=3.3)
- ElasticSearch(>=1.0.0)
1.2 安装步骤
-
首先,确保您已经安装了
pip和virtualenv工具。如果尚未安装,可以使用以下命令安装:easy_install virtualenv -
在项目根目录下,创建一个虚拟环境并激活它:
virtualenv pyenv source pyenv/bin/activate -
安装 Annotator Store 及其依赖项:
pip install -e .[flask] -
复制示例配置文件并启动服务:
cp annotator.cfg.example annotator.cfg python run.py -
如果一切顺利,您将看到类似以下的输出,表示服务已成功启动:
* Running on http://127.0.0.1:5000/ * Restarting with reloader...
1.3 自定义配置
如果您需要自定义 Annotator Store 的配置,可以编辑 annotator.cfg 文件或修改 run.py 文件中的配置项。
2. 项目的使用说明
2.1 启动服务
在完成安装后,您可以通过以下命令启动 Annotator Store 服务:
python run.py
默认情况下,服务将绑定到 127.0.0.1 的 5000 端口。您可以通过设置 HOST 和 PORT 环境变量来更改绑定的地址和端口。
2.2 访问 API
Annotator Store 提供了一个 RESTful API,默认情况下,API 将被挂载在 /api 路径下。您可以通过访问 http://127.0.0.1:5000/api 来使用该 API。
3. 项目 API 使用文档
3.1 API 概述
Annotator Store 的 API 设计兼容 Annotator 的存储 API。它提供了一个 JSON 格式的 REST API,用于管理注释的存储和检索。
3.2 API 端点
以下是一些常用的 API 端点:
GET /api/annotations:获取所有注释POST /api/annotations:创建新注释GET /api/annotations/{id}:获取指定 ID 的注释PUT /api/annotations/{id}:更新指定 ID 的注释DELETE /api/annotations/{id}:删除指定 ID 的注释
3.3 授权与权限
Annotator Store 提供了授权功能,可以根据注释的权限设置过滤搜索结果。您可以在配置文件中设置相关的权限规则。
4. 项目安装方式
4.1 使用 pip 安装
您可以直接使用 pip 安装 Annotator Store:
pip install annotator-store[flask]
4.2 从源码安装
如果您希望从源码安装,可以按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/openannotation/annotator-store.git cd annotator-store -
创建虚拟环境并激活它:
virtualenv pyenv source pyenv/bin/activate -
安装依赖项:
pip install -e .[flask] -
启动服务:
python run.py
4.3 测试安装
您可以使用 nosetests 或 Tox 来运行项目的测试套件,以确保安装正确:
pip install -e .[testing]
nosetests
或者使用 Tox 运行多版本 Python 测试:
tox
通过以上步骤,您应该能够成功安装并使用 Annotator Store。如果在安装或使用过程中遇到任何问题,请参考项目的 GitHub 页面或提交问题报告。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00