Apollo Client 4.0:变更mutation返回类型为ApolloQueryResult的技术解析
背景与现状
在Apollo Client的当前实现中,client.mutate(...)方法返回的是FetchResult类型。这个类型原本设计用于表示原始的GraphQL响应结果。然而,随着Apollo Client的发展,团队发现这种设计存在一些局限性,特别是在错误处理方面。
问题分析
当前实现中存在两个主要问题:
-
错误处理不一致:网络错误总是会触发Promise的rejection,而不管
errorPolicy如何设置。这与查询(queries)的行为不一致。 -
类型限制:
FetchResult类型不允许包含error字段,这使得无法将现有的错误处理行为统一到与查询相同的模式。
解决方案
Apollo Client团队决定将client.mutate(...)的返回类型从FetchResult改为ApolloQueryResult。这一变更带来了几个重要优势:
-
行为统一:现在mutation和query的错误处理方式完全一致,开发者可以使用相同的模式处理两种操作中的错误。
-
更完善的错误处理:
errorPolicy现在可以同时影响网络错误和GraphQL错误的行为,而不仅仅是后者。 -
类型安全:
ApolloQueryResult提供了更完整的类型定义,能够更好地表示可能出现的各种结果情况。
技术细节
变更前
// 旧版本
const result: FetchResult = await client.mutate(...);
变更后
// 新版本
const result: ApolloQueryResult = await client.mutate(...);
新的返回类型ApolloQueryResult包含以下关键属性:
data: 包含GraphQL返回的数据error: 包含可能出现的错误信息loading: 表示操作是否正在进行中networkStatus: 提供更详细的网络状态信息
影响范围
这一变更属于破坏性变更(breaking change),主要影响:
- 直接依赖
FetchResult类型进行类型检查的代码 - 对mutation结果进行特定错误处理的逻辑
- 使用了高级类型推断的TypeScript代码
迁移建议
对于现有项目,迁移到新版本时需要注意:
- 检查所有
client.mutate(...)的调用点,确保错误处理逻辑适应新的行为 - 更新类型定义,将
FetchResult替换为ApolloQueryResult - 测试网络错误场景,确认它们现在遵循
errorPolicy的设置
设计理念
这一变更体现了Apollo Client团队的一些核心设计理念:
- 一致性原则:保持API的行为一致性,减少开发者的认知负担
- 渐进增强:在保持核心功能稳定的前提下,逐步改进API设计
- 开发者体验:通过更合理的类型系统,提供更好的开发时安全保障
总结
Apollo Client 4.0将mutation操作的返回类型统一为ApolloQueryResult,这一变更虽然带来了短期内的迁移成本,但从长期来看显著提升了API的一致性和可预测性。开发者现在可以用相同的方式处理query和mutation的结果,减少了代码中的特殊处理逻辑,使得应用更加健壮和可维护。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00