在QNAP NAS上部署Palworld服务器容器的技术挑战与解决方案
背景介绍
Palworld是一款流行的多人在线游戏,许多玩家希望在私有设备上搭建自己的游戏服务器。QNAP NAS设备因其存储能力和24/7运行特性,成为搭建游戏服务器的理想选择。然而,在基于ARM架构的QNAP NAS上部署Palworld服务器容器时,会遇到一些特殊的技术挑战。
核心问题分析
在ARM架构的QNAP NAS(特别是TS-932PX型号)上部署Palworld服务器容器时,主要遇到两个关键问题:
-
页面大小不兼容:QNAP Container Station使用的内核采用了64KB页面大小,而大多数Linux应用程序(包括Palworld服务器)是为4KB页面大小设计的。
-
32位兼容性问题:虽然Cortex-A57处理器理论上支持AArch32模式,但QNAP的系统配置导致无法正常运行32位二进制文件,而SteamCMD(用于下载和更新游戏服务器)正是32位应用程序。
技术细节解析
页面大小问题
现代处理器使用虚拟内存管理,其中"页面"是内存管理的基本单位。传统x86和大多数ARM系统使用4KB页面,而某些ARM系统(如QNAP使用的配置)采用64KB页面。这种差异会导致:
- 内存访问异常
- 动态链接库加载失败
- 系统调用不兼容
32位兼容性问题
虽然ARMv8-A架构(如Cortex-A57)支持AArch32模式运行32位代码,但需要满足:
- 操作系统内核支持32位兼容模式
- 页面大小设置为4KB(32位应用程序的硬性要求)
- 必要的32位库和运行时环境
QNAP的系统配置在这些方面存在限制,导致无法直接运行SteamCMD等32位工具。
解决方案与实践
经过社区讨论和测试,目前可行的解决方案包括:
1. 预安装服务器文件
通过在兼容设备(x86架构的NAS或其他Linux系统)上预先下载和安装Palworld服务器文件,然后将其复制到ARM架构的QNAP NAS上。这种方法绕过了需要32位兼容性的SteamCMD步骤。
操作步骤:
- 在兼容设备上使用标准Docker镜像完成初始安装
- 将/palworld目录内容复制到目标设备
- 在目标设备上运行容器时设置UPDATE_ON_BOOT=false
2. 使用特定版本的Box64
Box64是一个x86_64到ARM64的动态二进制转换器。针对64KB页面系统,社区提供了特殊编译版本:
thijsvanloef/palworld-server-docker:pr-464
这个版本包含了对不同页面大小的适配,能够更好地在QNAP NAS上运行。
3. 错误处理与稳定性优化
运行过程中可能遇到的错误信号(Signal 5/11)通常不会影响服务器运行,属于ARM64系统上的常见现象。可以通过以下方式提高稳定性:
- 确保有足够的交换空间
- 限制玩家数量以减少内存压力
- 定期重启服务器释放内存
性能考量
在ARM架构上运行x86游戏服务器需要考虑:
- 性能损失:二进制转换会带来约20-30%的性能开销
- 内存使用:转换层需要额外内存,建议至少8GB RAM
- CPU利用率:四核Cortex-A57可能支持5-10名玩家同时在线
结论与建议
在QNAP NAS上运行Palworld服务器容器是可行的,但需要特殊处理。对于技术用户,推荐采用预安装服务器文件的方法;对于追求简便性的用户,可以等待官方镜像的进一步优化。
未来随着容器技术的进步和游戏服务器的原生ARM64支持,这类兼容性问题有望得到根本解决。目前而言,理解底层技术限制并采取适当变通方案,是成功部署的关键。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









