解决segmentation_models.pytorch中SSL证书验证失败问题
2025-05-22 02:46:02作者:田桥桑Industrious
在使用segmentation_models.pytorch库加载预训练模型时,许多开发者遇到了SSL证书验证失败的错误。这个问题通常表现为"CERTIFICATE_VERIFY_FAILED"错误,导致模型权重文件无法正常下载。
问题现象
当执行以下代码尝试加载预训练模型时:
model = smp.Unet(
encoder_name="vgg19",
encoder_weights="imagenet",
in_channels=3,
classes=1,
activation='sigmoid'
)
系统会抛出URLError,提示SSL证书验证失败,具体错误信息为"certificate verify failed: certificate has expired"。
问题原因
这个问题的根源在于:
- 预训练模型权重文件通常托管在远程服务器上
- 这些服务器的SSL证书可能已经过期或不被本地系统信任
- Python的urllib在下载文件时会默认验证SSL证书
- 当证书验证失败时,下载过程会被中止
解决方案
方法一:手动下载权重文件
最可靠的解决方案是手动下载所需的预训练权重文件,并将其放置在正确的缓存目录中。具体步骤如下:
- 确定你需要下载的模型权重文件URL(可以通过错误信息或查阅文档获得)
- 使用wget或浏览器手动下载该文件
- 将文件放置在torch的缓存目录中(通常是~/.cache/torch/hub/checkpoints/)
例如,对于senet154模型,可以使用以下命令:
wget --no-check-certificate https://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth -O $HOME/.cache/torch/hub/checkpoints/senet154-c7b49a05.pth
方法二:临时禁用SSL验证(不推荐)
虽然不推荐在生产环境中使用,但在开发测试时可以通过以下方式临时禁用SSL验证:
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
注意:这种方法会降低安全性,应谨慎使用。
最佳实践
- 对于常用模型,建议提前下载好权重文件并缓存
- 在持续集成/部署环境中,可以将权重文件作为构建的一部分预先准备好
- 考虑使用国内镜像源或自建模型仓库来避免证书问题
- 定期检查模型权重文件的更新情况
总结
SSL证书验证失败是深度学习开发中常见的问题,特别是在加载预训练模型时。通过理解问题的根源并采用合适的解决方案,开发者可以有效地绕过这一障碍,顺利加载所需的模型权重。手动下载方法虽然稍显繁琐,但提供了最稳定可靠的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287