首页
/ KagNet 开源项目教程

KagNet 开源项目教程

2024-09-21 02:50:46作者:秋阔奎Evelyn

1. 项目介绍

KagNet 是一个用于常识推理的知识感知图网络模型,由 USC INK 实验室开发。该模型在 EMNLP-IJCNLP 2019 会议上提出,旨在通过利用外部结构化的常识知识图谱来执行可解释的推理。KagNet 的核心思想是将问题-答案对从语义空间映射到知识图谱的符号空间,并通过图卷积网络和 LSTM 结合层次路径注意力机制来表示和评分答案。

2. 项目快速启动

2.1 环境准备

首先,确保你的系统已经安装了以下依赖:

sudo apt-get install graphviz libgraphviz-dev pkg-config
conda create -n kagnet_test python==3.6.3
conda activate kagnet_test
pip install torch torchvision
pip install tensorflow-gpu==1.10.0
conda install faiss-gpu cudatoolkit=10.0 -c pytorch -n kagnet_test
pip install nltk
conda install -c conda-forge spacy -n kagnet_test
python -m spacy download en
pip install jsbeautifier
pip install networkx
pip install dgl
pip install pygraphviz
pip install allennlp

2.2 下载和预处理数据

下载 CommonsenseQA 数据集并进行预处理:

cd datasets
mkdir csqa_new
wget -P csqa_new https://s3.amazonaws.com/commensenseqa/train_rand_split.jsonl
wget -P csqa_new https://s3.amazonaws.com/commensenseqa/dev_rand_split.jsonl
wget -P csqa_new https://s3.amazonaws.com/commensenseqa/test_rand_split_no_answers.jsonl
python convert_csqa.py csqa_new/train_rand_split.jsonl csqa_new/train_rand_split.jsonl.statements
python convert_csqa.py csqa_new/dev_rand_split.jsonl csqa_new/dev_rand_split.jsonl.statements
python convert_csqa.py csqa_new/test_rand_split_no_answers.jsonl csqa_new/test_rand_split_no_answers.jsonl.statements

2.3 概念接地和图构建

进行概念接地和图构建:

cd grounding
python batched_grounding.py generate_bash "datasets/csqa_new/train_rand_split.jsonl.statements"
bash cmd.sh
python batched_grounding.py combine "datasets/csqa_new/train_rand_split.jsonl.statements"
python prune_qc.py datasets/csqa_new/train_rand_split.jsonl.statements mcp

2.4 训练 KagNet 模型

使用预处理的数据训练 KagNet 模型:

cd models
python main.py

3. 应用案例和最佳实践

KagNet 主要应用于需要常识推理的任务,如问答系统、对话系统等。通过结合外部知识图谱,KagNet 能够提供更准确和可解释的推理结果。最佳实践包括:

  • 数据预处理:确保数据集的格式和内容符合 KagNet 的要求。
  • 模型调优:根据具体任务调整模型参数,如学习率、批量大小等。
  • 结果解释:利用 KagNet 的层次路径注意力机制,解释模型的推理过程。

4. 典型生态项目

  • ConceptNet:作为 KagNet 的主要外部知识图谱资源,ConceptNet 提供了丰富的常识知识。
  • CommonsenseQA:KagNet 在 CommonsenseQA 数据集上取得了最先进的性能,该数据集是评估常识推理模型的标准基准。
  • BERT:KagNet 结合了 BERT 模型进行文本表示,进一步提升了模型的性能。

通过这些生态项目的结合,KagNet 能够更好地应用于实际的常识推理任务中。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
609
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
184
34
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0