Apache IoTDB 1.3.4 版本发布:时序数据库的全面升级
Apache IoTDB 是一款专为物联网场景设计的高性能时序数据库管理系统,具有高效的数据存储、查询和分析能力。它特别适合处理海量时间序列数据,广泛应用于工业物联网、车联网、智能家居等领域。本次发布的 1.3.4 版本在功能增强、系统管理和性能优化等方面都有显著提升。
核心功能增强
在数据查询方面,1.3.4 版本引入了对 UDF、PipePlugin、Trigger 和 AINode 的 JAR 包加载控制功能。用户现在可以通过配置项灵活管理这些扩展功能的加载方式,这为系统安全性和资源管理提供了更细粒度的控制。同时,新增了对合并过程中时间索引缓存的监控,使得系统管理员能够更好地掌握合并操作对系统资源的影响。
查询功能还新增了 pattern_match 函数,这是一个强大的模式匹配工具,特别适合处理具有特定模式的时序数据。这个函数可以显著提升复杂查询场景下的开发效率。
系统管理优化
在系统管理方面,1.3.4 版本带来了多项重要改进。Python 会话 SDK 新增了连接超时参数,解决了在网络不稳定环境下可能出现的连接问题。集群管理操作现在需要授权,增强了系统的安全性。
集群伸缩功能得到增强,ConfigNode/DataNode 现在支持通过 SQL 进行缩容操作,这大大简化了集群规模调整的复杂度。同时,ConfigNode 会自动清理超过 TTL 的分区信息(每 2 小时清理一次),有效防止了系统资源的浪费。
数据同步与生态集成
数据同步功能在 1.3.4 版本中更加完善。发送端现在可以指定接收端的授权信息,这使得跨安全域的数据同步更加安全可靠。对于需要将数据同步到不同安全环境的场景,这一功能尤为重要。
在生态集成方面,1.3.4 版本新增了对 Kubernetes Operator 的支持,这意味着用户现在可以更方便地在 Kubernetes 环境中部署和管理 IoTDB 集群,进一步提升了系统的可扩展性和运维便利性。
脚本工具增强
导入导出工具在这个版本中得到了显著增强。import-data/export-data 脚本现在支持更多数据类型,包括字符串、大型二进制对象、日期和时间戳等。同时,这些脚本还新增了对三种数据格式的支持:TsFile、CSV 和 SQL,为用户提供了更灵活的数据迁移方案。
关键问题修复
1.3.4 版本修复了多个影响系统稳定性和功能正确性的问题。其中包括:
- 修复了树模型中 HAVING 子句列名不存在导致的数组越界问题
- 解决了 SELECT INTO 语句中目标序列包含反引号时的写入错误
- 修复了异常断电后生成空 iot-consensus 文件导致 DataNode 无法启动的问题
- 解决了手动删除资源文件后异步恢复期间存储引擎报错导致 Pipe 启动失败的问题
- 修复了外部 Pipe 转发数据无法在双活间同步的问题
- 解决了 C# 客户端在查询大量数据时的结果集获取问题
这些修复显著提升了系统的稳定性和可靠性,特别是在高负载和异常情况下的表现。
总结
Apache IoTDB 1.3.4 版本在功能、性能和稳定性方面都有显著提升。新增的模式匹配函数、增强的集群管理能力、改进的数据同步机制以及更完善的脚本工具,使得这个版本成为物联网时序数据管理的强大工具。特别是对 Kubernetes 生态的支持,为云原生环境下的部署提供了更好的解决方案。对于现有用户来说,升级到这个版本将获得更好的使用体验和更稳定的运行表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00