pytest项目中的测试跳过性能回归问题分析与解决
问题背景
在pytest测试框架中,开发者发现了一个显著的性能退化问题。当测试用例被跳过时,处理跳过结果的CPU开销会随着调用栈深度的增加而急剧上升。这个性能问题在pytest 8.0.0版本中首次出现,并在后续版本中变得更加严重。
问题表现
通过一个简单的测试用例可以清晰地复现这个问题:
import pytest
def get_data():
pytest.skip("Skipped")
@pytest.fixture(scope="session")
def data():
return get_data()
@pytest.mark.parametrize("index", list(range(1000)))
def test_do_nothing(data, index):
assert index >= 0
在pytest 7.4.4版本中,这个测试套件执行仅需0.78秒,而在pytest 8.2.2版本中却需要23.93秒,性能下降了约30倍。这个问题在Windows和Linux系统上都能复现,影响Python 3.10至3.13等多个版本。
问题根源
经过代码审查和问题定位,发现这个性能退化源于2023年7月的一个提交。该提交修改了FixtureDef.cached_result的数据结构,将原本存储异常三元组的方式改为直接存储异常对象。这个改动虽然解决了另一个问题,但意外地导致了跳过测试时的性能下降。
问题的本质在于,当测试被跳过时,pytest会收集并处理整个调用栈信息。随着调用栈深度的增加,处理这些信息的开销呈指数级增长。在修改后的实现中,每次处理跳过测试时都会重新生成完整的调用栈信息,而不是复用之前的结果。
解决方案
开发团队在2024年4月已经修复了这个问题。修复的核心思路是优化了高作用域失败fixture的traceback处理机制,避免了每次都需要重新生成完整的调用栈信息。这个修复显著减少了处理跳过测试时的CPU开销,使性能恢复到正常水平。
技术启示
-
性能监控的重要性:即使是看似简单的数据结构变更,也可能带来意想不到的性能影响。在框架开发中,需要建立完善的性能基准测试。
-
调用栈处理的优化:在处理测试跳过或失败时,调用栈信息的收集和处理往往是性能瓶颈。需要特别注意这方面的优化。
-
版本升级的兼容性:框架升级可能带来性能变化,用户应该关注发布说明中的性能相关变更,并在升级前进行充分的测试。
最佳实践
对于pytest用户,建议:
-
如果遇到类似的测试跳过性能问题,考虑升级到包含修复的pytest版本。
-
在编写测试代码时,尽量避免深层嵌套的fixture调用,特别是在可能被跳过的场景中。
-
定期运行性能基准测试,及时发现和报告性能退化问题。
这个问题及其解决方案展示了开源社区如何通过协作快速识别和修复性能问题,同时也提醒我们在框架开发中需要更加谨慎地处理调用栈信息这类看似简单但影响深远的实现细节。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









