pytest项目中的测试跳过性能回归问题分析与解决
问题背景
在pytest测试框架中,开发者发现了一个显著的性能退化问题。当测试用例被跳过时,处理跳过结果的CPU开销会随着调用栈深度的增加而急剧上升。这个性能问题在pytest 8.0.0版本中首次出现,并在后续版本中变得更加严重。
问题表现
通过一个简单的测试用例可以清晰地复现这个问题:
import pytest
def get_data():
pytest.skip("Skipped")
@pytest.fixture(scope="session")
def data():
return get_data()
@pytest.mark.parametrize("index", list(range(1000)))
def test_do_nothing(data, index):
assert index >= 0
在pytest 7.4.4版本中,这个测试套件执行仅需0.78秒,而在pytest 8.2.2版本中却需要23.93秒,性能下降了约30倍。这个问题在Windows和Linux系统上都能复现,影响Python 3.10至3.13等多个版本。
问题根源
经过代码审查和问题定位,发现这个性能退化源于2023年7月的一个提交。该提交修改了FixtureDef.cached_result的数据结构,将原本存储异常三元组的方式改为直接存储异常对象。这个改动虽然解决了另一个问题,但意外地导致了跳过测试时的性能下降。
问题的本质在于,当测试被跳过时,pytest会收集并处理整个调用栈信息。随着调用栈深度的增加,处理这些信息的开销呈指数级增长。在修改后的实现中,每次处理跳过测试时都会重新生成完整的调用栈信息,而不是复用之前的结果。
解决方案
开发团队在2024年4月已经修复了这个问题。修复的核心思路是优化了高作用域失败fixture的traceback处理机制,避免了每次都需要重新生成完整的调用栈信息。这个修复显著减少了处理跳过测试时的CPU开销,使性能恢复到正常水平。
技术启示
-
性能监控的重要性:即使是看似简单的数据结构变更,也可能带来意想不到的性能影响。在框架开发中,需要建立完善的性能基准测试。
-
调用栈处理的优化:在处理测试跳过或失败时,调用栈信息的收集和处理往往是性能瓶颈。需要特别注意这方面的优化。
-
版本升级的兼容性:框架升级可能带来性能变化,用户应该关注发布说明中的性能相关变更,并在升级前进行充分的测试。
最佳实践
对于pytest用户,建议:
-
如果遇到类似的测试跳过性能问题,考虑升级到包含修复的pytest版本。
-
在编写测试代码时,尽量避免深层嵌套的fixture调用,特别是在可能被跳过的场景中。
-
定期运行性能基准测试,及时发现和报告性能退化问题。
这个问题及其解决方案展示了开源社区如何通过协作快速识别和修复性能问题,同时也提醒我们在框架开发中需要更加谨慎地处理调用栈信息这类看似简单但影响深远的实现细节。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00