DroidRun项目中的Gemini API集成与本地Ollama模型使用指南
2025-07-04 12:43:01作者:鲍丁臣Ursa
概述
DroidRun作为一个基于LLM的Android设备自动化框架,其核心功能依赖于大型语言模型的能力。本文将深入探讨如何在DroidRun项目中有效集成Gemini API以及配置本地Ollama模型作为替代方案。
Gemini API集成问题分析
在DroidRun项目中,默认配置使用的是OpenAI API,但开发者可能希望切换到Google的Gemini API。常见问题包括:
- 环境变量配置:系统会默认检查OPENAI_API_KEY变量,即使开发者已经设置了GEMINI_API_KEY
- 命令行参数要求:每次执行命令都需要显式指定--provider gemini参数
- 交互模式支持:直接运行交互式脚本时缺乏对Gemini的默认支持
解决方案与最佳实践
环境配置
对于Gemini API的使用,推荐采用以下配置方式:
from droidrun.agent.llm_reasoning import LLMReasoner
import os
llm = LLMReasoner(
llm_provider="gemini",
model_name="gemini-2.0-flash",
api_key=os.environ.get("GEMINI_API_KEY"),
temperature=0.2
)
交互式脚本优化
开发者可以创建自定义的交互式脚本,封装Gemini配置,避免重复参数输入:
async def main():
llm = LLMReasoner(
llm_provider="gemini",
model_name="gemini-2.0-flash",
api_key=os.environ.get("GEMINI_API_KEY"),
temperature=0.2
)
while True:
task = input("请输入任务指令: ")
if task.lower() == 'exit':
break
agent = ReActAgent(task=task, llm=llm)
await agent.run()
本地Ollama模型集成
对于希望使用本地模型的开发者,DroidRun支持通过Ollama集成本地LLM:
基础配置
from llama_index.llms.ollama import Ollama
from droidrun.agent.droid import DroidAgent
llm = Ollama(
model="gemma3:4b",
base_url="http://127.0.0.1:11434",
temperature=0.2,
request_timeout=120.0
)
agent = DroidAgent(
goal="您的任务描述",
llm=llm,
device_serial="您的设备序列号",
max_steps=10
)
完整工作流程示例
- 确保Ollama服务运行在本地11434端口
- 拉取所需的模型:
ollama pull gemma3:4b - 配置DroidAgent使用本地模型
- 执行自动化任务
性能优化建议
- 温度参数调整:对于确定性任务,建议temperature设为0.1-0.3;创造性任务可适当提高
- 超时设置:根据网络状况调整request_timeout,本地模型可适当缩短
- 日志记录:启用debug和tracing选项便于问题排查
- 轨迹保存:设置save_trajectories=True可记录完整执行过程
常见问题排查
- 模型加载失败:检查Ollama服务状态和模型名称拼写
- 设备连接问题:确保ADB已正确配置且设备已授权
- API密钥无效:验证环境变量是否在正确的作用域设置
- 执行中断:适当增加max_steps和timeout参数
总结
DroidRun框架提供了灵活的LLM集成方案,无论是云端API如Gemini还是本地Ollama模型都能良好支持。开发者可根据实际需求选择适合的后端,并通过合理的参数配置优化自动化任务的执行效果。对于注重隐私或需要离线使用的场景,本地模型集成方案提供了可行的替代选择。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218