Kyuubi项目Hive跨集群读写Kerberos认证问题解析
问题背景
在Kyuubi项目中,当用户尝试在两个启用了Kerberos认证的Hive集群之间进行跨集群读写操作时,遇到了认证失败的问题。具体表现为:在本地模式下运行Spark Shell时可以正常读写数据,但当提交到YARN集群运行时却出现AccessControlException异常,提示"Client cannot authenticate via:[TOKEN, KERBEROS]"。
问题现象
用户配置了两个Hive集群,并已建立Kerberos互信机制。在本地模式下使用如下配置启动Spark Shell时,可以成功查询数据:
spark-shell --master local[*] \
--conf "spark.sql.catalogImplementation=hive" \
--conf "spark.sql.catalog.reader_catalog=org.apache.kyuubi.spark.connector.hive.HiveTableCatalog" \
# 其他HDFS和Hive相关配置...
但当相同的代码提交到YARN集群运行时,却抛出认证异常,无法访问目标HDFS集群。
问题原因分析
这个问题主要源于YARN集群环境下Kerberos认证机制的差异:
-
本地模式与集群模式的区别:在本地模式下,Spark进程直接使用用户的Kerberos凭证进行认证;而在YARN集群模式下,任务会在不同的节点上执行,需要额外的配置来确保Kerberos凭证能够正确传播。
-
Hadoop安全机制:跨集群访问时,Spark需要明确知道需要访问哪些HDFS集群,以便获取相应的Kerberos票据。
-
认证方式限制:错误信息显示客户端无法通过TOKEN或KERBEROS方式认证,表明系统未能正确获取或使用Kerberos票据。
解决方案
针对这个问题,Kyuubi社区提供了两种解决方案:
-
配置spark.kerberos.access.hadoopFileSystems参数: 这个参数需要列出所有需要访问的HDFS集群地址,例如:
--conf "spark.kerberos.access.hadoopFileSystems=hdfs://cluster-a,hdfs://cluster-b"这样Spark就能知道需要为哪些HDFS集群获取Kerberos票据。
-
使用keytab方式提交Spark应用: 通过指定principal和keytab文件来提交作业,确保所有节点都能使用相同的凭证:
spark-shell --principal <principal> --keytab <keytab_path> ...
技术原理深入
Kerberos在分布式环境中的认证流程:
- 客户端首先向KDC获取TGT(Ticket Granting Ticket)
- 使用TGT获取服务票据(Service Ticket)
- 使用服务票据访问具体服务
在跨集群场景下,Spark需要:
- 为每个需要访问的HDFS集群获取独立的服务票据
- 确保这些票据能够在所有执行节点上可用
- 正确处理票据的更新和续期
最佳实践建议
- 对于生产环境,推荐使用keytab方式提交作业,更加稳定可靠
- 确保所有涉及的HDFS集群地址都正确配置在spark.kerberos.access.hadoopFileSystems中
- 定期更新keytab文件,避免票据过期导致作业失败
- 在YARN配置中设置适当的票据更新间隔
总结
Kyuubi项目在跨Kerberos认证的Hive集群间进行数据读写时,需要特别注意认证凭证的传播和配置。通过合理配置spark.kerberos.access.hadoopFileSystems参数或使用keytab提交方式,可以有效解决这类认证问题。这体现了在安全认证环境下进行跨集群数据访问时,凭证管理和传播机制的重要性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00