Kyuubi项目Hive跨集群读写Kerberos认证问题解析
问题背景
在Kyuubi项目中,当用户尝试在两个启用了Kerberos认证的Hive集群之间进行跨集群读写操作时,遇到了认证失败的问题。具体表现为:在本地模式下运行Spark Shell时可以正常读写数据,但当提交到YARN集群运行时却出现AccessControlException异常,提示"Client cannot authenticate via:[TOKEN, KERBEROS]"。
问题现象
用户配置了两个Hive集群,并已建立Kerberos互信机制。在本地模式下使用如下配置启动Spark Shell时,可以成功查询数据:
spark-shell --master local[*] \
--conf "spark.sql.catalogImplementation=hive" \
--conf "spark.sql.catalog.reader_catalog=org.apache.kyuubi.spark.connector.hive.HiveTableCatalog" \
# 其他HDFS和Hive相关配置...
但当相同的代码提交到YARN集群运行时,却抛出认证异常,无法访问目标HDFS集群。
问题原因分析
这个问题主要源于YARN集群环境下Kerberos认证机制的差异:
-
本地模式与集群模式的区别:在本地模式下,Spark进程直接使用用户的Kerberos凭证进行认证;而在YARN集群模式下,任务会在不同的节点上执行,需要额外的配置来确保Kerberos凭证能够正确传播。
-
Hadoop安全机制:跨集群访问时,Spark需要明确知道需要访问哪些HDFS集群,以便获取相应的Kerberos票据。
-
认证方式限制:错误信息显示客户端无法通过TOKEN或KERBEROS方式认证,表明系统未能正确获取或使用Kerberos票据。
解决方案
针对这个问题,Kyuubi社区提供了两种解决方案:
-
配置spark.kerberos.access.hadoopFileSystems参数: 这个参数需要列出所有需要访问的HDFS集群地址,例如:
--conf "spark.kerberos.access.hadoopFileSystems=hdfs://cluster-a,hdfs://cluster-b"这样Spark就能知道需要为哪些HDFS集群获取Kerberos票据。
-
使用keytab方式提交Spark应用: 通过指定principal和keytab文件来提交作业,确保所有节点都能使用相同的凭证:
spark-shell --principal <principal> --keytab <keytab_path> ...
技术原理深入
Kerberos在分布式环境中的认证流程:
- 客户端首先向KDC获取TGT(Ticket Granting Ticket)
- 使用TGT获取服务票据(Service Ticket)
- 使用服务票据访问具体服务
在跨集群场景下,Spark需要:
- 为每个需要访问的HDFS集群获取独立的服务票据
- 确保这些票据能够在所有执行节点上可用
- 正确处理票据的更新和续期
最佳实践建议
- 对于生产环境,推荐使用keytab方式提交作业,更加稳定可靠
- 确保所有涉及的HDFS集群地址都正确配置在spark.kerberos.access.hadoopFileSystems中
- 定期更新keytab文件,避免票据过期导致作业失败
- 在YARN配置中设置适当的票据更新间隔
总结
Kyuubi项目在跨Kerberos认证的Hive集群间进行数据读写时,需要特别注意认证凭证的传播和配置。通过合理配置spark.kerberos.access.hadoopFileSystems参数或使用keytab提交方式,可以有效解决这类认证问题。这体现了在安全认证环境下进行跨集群数据访问时,凭证管理和传播机制的重要性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00