使用Olive项目进行GPTQ量化时处理自定义数据集的技巧
2025-07-07 04:45:50作者:凌朦慧Richard
背景介绍
Olive是一个由微软开发的开源模型优化工具,它支持多种量化算法,包括GPTQ(一种基于梯度信息的后训练量化方法)。在实际应用中,用户经常需要对自定义数据集进行量化处理,特别是针对聊天模型等特定场景。
问题核心
在使用Olive进行GPTQ量化时,用户遇到了两个主要问题:
-
数据集分割问题:当使用验证集时,系统报错提示"Unknown split 'validation'",因为本地加载的数据集默认只有一个"train"分割。
-
数据格式问题:当使用训练集时,系统无法正确处理聊天格式的数据,报错提示"KeyError: 'text'",因为默认处理逻辑期望的是纯文本字段。
解决方案
针对这些问题,Olive项目提供了以下解决方案:
-
分割参数调整:对于本地数据集文件,应当使用
--split train参数,因为本地加载的数据集默认只有一个"train"分割。 -
聊天模板支持:新增了
--use_chat_template参数,专门用于处理聊天格式的数据。这个参数会调用tokenizer的聊天模板来处理数据,而不是默认的纯文本处理方式。
实际应用建议
对于需要量化类似Phi 3.5 mini instruct这样的聊天模型,建议采用以下配置:
olive quantize -m 模型路径 --algorithm gptq --precision int8 --data_name json --data_files 数据文件路径 --split train --use_chat_template
技术细节
-
数据加载机制:Olive默认使用Hugging Face的datasets库加载数据,本地文件会被视为单一分割的数据集。
-
预处理流程:
--use_chat_template参数会改变预处理流程,使用tokenizer的聊天模板来处理对话格式的数据,确保系统能正确理解角色和内容的结构。 -
未来发展:Olive团队正在考虑为GPTQ量化器提供默认的校准数据集,以简化用户配置过程。
最佳实践
- 对于聊天模型,始终使用
--use_chat_template参数 - 本地数据集文件应明确指定
--split train - 确保数据格式与模型训练时的格式一致
- 对于生产环境,建议先在小规模数据上测试量化效果
通过以上方法,用户可以顺利地对自定义聊天模型进行GPTQ量化,获得高效的推理性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882