Llama-recipes项目中新增词汇表未正确保存的问题分析
2025-05-13 04:55:20作者:郁楠烈Hubert
问题背景
在Llama-recipes项目进行模型微调时,开发者发现当向tokenizer添加新词汇并调整模型嵌入层大小后,保存的模型未能正确保留这些修改。具体表现为:尽管在训练前调用了tokenizer.add_tokens()和model.resize_token_embeddings(),但最终保存的模型嵌入层维度仍保持原始大小。
技术细节分析
问题重现流程
-
在微调脚本中,开发者按照标准流程:
- 使用
tokenizer.add_tokens()添加新词汇 - 调用
model.resize_token_embeddings(len(tokenizer))调整嵌入层大小
- 使用
-
训练完成后,通过FSDP到HuggingFace格式的转换工具保存模型
-
检查保存的模型时发现:
model.get_input_embeddings().weight.shape[0]仍为原始词汇表大小- 新添加的词汇对应的嵌入层参数未被保存
根本原因
问题出在权重转换环节。Llama-recipes项目中使用的convert_hf_weights_to_llama.py脚本在转换权重时,没有考虑词汇表扩展的情况。该脚本直接使用原始模型的配置参数,导致新添加的词汇对应的嵌入层参数在转换过程中丢失。
解决方案
临时解决方案
开发者可以手动修改转换脚本,在权重转换前确保:
- 正确加载扩展后的tokenizer
- 根据实际词汇表大小调整模型配置
- 确保嵌入层权重矩阵的维度与新词汇表大小匹配
长期改进建议
项目维护者应考虑以下改进:
- 在权重转换脚本中加入词汇表大小验证
- 自动检测并处理词汇表扩展情况
- 提供明确的文档说明如何处理自定义词汇表的情况
最佳实践建议
对于需要在Llama模型中添加自定义词汇的开发者,建议:
- 在训练前后都验证词汇表大小是否一致
- 检查转换后的模型是否保留了所有自定义词汇
- 考虑在转换后手动调整模型配置中的词汇表相关参数
这个问题凸显了在大型语言模型微调过程中,保持各组件(特别是tokenizer和模型架构)之间一致性的重要性。开发者需要特别注意模型配置与实际参数之间的匹配关系,特别是在进行词汇表扩展这类操作时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1