Guardrails与Langchain AgentExecutor集成的最佳实践
2025-06-11 14:57:56作者:龚格成
背景介绍
在现代AI应用开发中,将不同组件进行集成是常见的需求。Guardrails作为一个强大的验证框架,常被用于确保AI输出的质量和安全性。而Langchain的AgentExecutor则是一个功能强大的代理执行器,能够协调多个工具调用完成复杂任务。
集成挑战
开发者在使用Guardrails验证Langchain AgentExecutor输出时,常会遇到几个典型问题:
- 类型错误:当尝试在LLM链中直接插入Guard验证时,会收到
TypeError: RunnableSequence._transform() got an unexpected keyword argument 'tools'错误 - API缺失错误:在某些位置插入验证时,会出现
ValueError: API must be provided错误 - 验证时机不当:验证器在代理执行前就被触发,导致无法获取有效输出
解决方案
经过深入分析,正确的集成方式是将Guardrails验证放在AgentExecutor之后,而非中间环节。这种架构设计有如下优势:
- 确保完整执行:AgentExecutor能够完整执行所有工具调用和决策流程
- 验证最终输出:Guardrails验证的是经过代理处理后的最终结果,而非中间状态
- 保持流程清晰:验证逻辑与应用逻辑分离,便于维护和调试
实现代码示例
# 初始化基础组件
prompt = hub.pull("hwchase17/openai-tools-agent")
model = ChatOpenAI(temperature=0, streaming=False)
tools = [get_retriever_docs]
# 构建代理链
agent = (
RunnablePassthrough.assign(
agent_scratchpad=lambda x: format_to_openai_tool_messages(
x["intermediate_steps"]
)
)
| prompt
| model.bind(tools=[convert_to_openai_tool(tool) for tool in tools])
| OpenAIToolsAgentOutputParser()
)
# 创建执行器并添加验证
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
chain = agent_executor | Guard().use(RegexMatch("apricot", match_type="search"))
架构设计思考
这种集成方式体现了良好的系统设计原则:
- 单一职责:每个组件只关注自己的核心功能
- 开闭原则:可以在不修改原有代理逻辑的情况下添加验证
- 控制反转:验证逻辑与业务逻辑解耦
性能考量
在实际应用中,还需要考虑:
- 流式处理:如果使用streaming模式,需要确保验证器能够处理流式输出
- 错误处理:合理配置on_fail策略,决定是过滤、修正还是抛出异常
- 性能开销:验证逻辑可能增加延迟,需要评估是否可接受
总结
Guardrails与Langchain AgentExecutor的集成展示了现代AI系统组件化设计的强大之处。通过合理的架构设计,我们可以在保持系统灵活性的同时,确保输出的可靠性和安全性。这种模式也适用于其他类似系统的集成场景。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25