karma-browserify - 快速高效的浏览器端测试解决方案
karma-browserify 是一个专为 Karma 设计的高效 Browserify 集成插件,它能轻松处理大规模的前端项目,并且支持快速的自动重载功能。
安装与使用
要获取这个插件,可以通过 npm 进行安装,同时还需要安装 browserify 和 watchify,用于自动化构建和监视文件变化。
npm install --save-dev karma-browserify browserify watchify
在你的 Karma 配置文件中添加 browserify 作为框架,并配置相应的预处理器。
module.exports = function(karma) {
karma.set({
frameworks: [ 'browserify', 'jasmine' ],
files: ['test/**/*.js'],
preprocessors: {
'test/**/*.js': [ 'browserify' ]
},
browserify: {
debug: true,
transform: [ 'brfs' ]
}
});
}
查看 示例目录 获取一个简单的结合了 browserify 和 jasmine 的测试项目实例。
功能特性
浏览器ify配置
你可以直接通过 Karma 的 browserify 属性来配置测试捆绑包。所有的 browserify 配置选项都可以在这里设置。
例如,为了生成源码映射便于调试:
browserify: {
debug: true
}
以下三个属性不会直接传递给 browserify:
- 转换(Transforms)
- 插件(Plugins)
- 额外的捆绑配置(Additional Bundle Configuration)
转换(Transforms)
如果你使用 CoffeeScript, JSX 或其他工具,需要在打包前转换源文件,可以指定 browserify 转换器(transform)。
browserify: {
transform: [ 'reactify', 'coffeeify', 'brfs' ],
extensions: ['.js', '.jsx', '.coffee'] // 别忘了注册扩展名
}
插件(Plugins)
browserify 插件 支持同样的语法。
browserify: {
plugin: [ 'stringify' ]
}
额外的捆绑配置(Additional Bundle Configuration)
你可以在 configure 函数里进行进一步的捆绑配置,该函数会接收一个 browserify 实例作为参数。这非常适用于配置如 externals 这样的需求:
browserify: {
configure: function(bundle) {
bundle.on('prebundle', function() {
bundle.external('foobar');
});
}
}
Watchify 配置
你可以通过 config.watchify 来配置底层的 watchify,以便对文件变更检测进行微调。
watchify: {
poll: true
}
工作原理
karma-browserify 是一个 Karma 预处理器,将测试文件和依赖合并到一个 browserify 捆绑包中。它利用 watchify 在 autoWatch=true 时生成并更新捆绑包。初始运行时,我们为所有测试用例和依赖创建一个捆绑包。一旦有文件改变,它就会增量地更新捆绑包。每个被 Karma 加载的文件都会通过一个存根在捆绑包中引入,确保测试在每次运行时只执行一次。
全面配置
下面是一个包含所有 browserify 相关选项的 Karma 配置示例:
module.exports = function(karma) {
karma.set({
frameworks: [ 'browserify', 'jasmine' ],
files: [
'some-non-cjs-library.js',
'test/**/*.js'
],
preprocessors: {
'test/**/*.js': [ 'browserify' ]
},
logLevel: 'LOG_DEBUG',
autoWatch: true,
browserify: {
debug: true,
transform: [ 'brfs' ],
configure: function(bundle) {
bundle.on('prebundle', function() {
bundle.external('foobar');
});
}
}
});
};
相关项目
karma-browserify 建立在原本的 karma-browserify 和 karma-browserifast 之上,吸取了它们的经验教训,提供了更完善的可配置性,更快的速度以及处理大型项目的能力。
维护者
由 Ben Drucker 和 Nico Rehwaldt 主导维护。
许可证
本项目遵循 MIT 开源许可证。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00