SeleniumLibrary 6.7.0 发布:支持Python 3.13及多项改进
SeleniumLibrary是Robot Framework生态中用于Web自动化测试的核心库之一,它基于Selenium WebDriver提供了丰富的关键字和方法,帮助测试人员轻松实现浏览器自动化操作。作为Robot Framework最受欢迎的扩展库之一,SeleniumLibrary持续保持着活跃的开发和维护。
版本亮点
最新发布的SeleniumLibrary 6.7.0版本带来了多项重要更新和改进,主要包括对Python 3.13的支持、元素定位解析修复以及本地化支持增强等。该版本兼容Python 3.8至3.13版本,支持Selenium 4.21.0至4.24.0,并与Robot Framework 6.1.1和7.1.1版本良好配合。
主要技术改进
元素定位解析修复
本次版本修复了一个关于元素定位解析的重要问题。当使用特定策略(specific strategy)且定位包含多个冒号时,解析器会错误地处理定位字符串。例如,类似"specific:test:example"这样的定位会被错误解析。这个问题由社区贡献者Markus Leben发现并修复,确保了复杂元素定位的正确解析。
增强的本地化支持
SeleniumLibrary 6.7.0改进了对多语言支持的处理机制,现在能够更好地支持来自同一本地化项目的多个翻译版本。这一改进为使用不同语言的测试团队提供了更灵活的本地化选项,使得非英语用户能够更方便地使用库中的关键字。
Python 3.13兼容性
随着Python生态的不断发展,SeleniumLibrary也及时跟进,新增了对Python 3.13的支持。这使得使用最新Python版本的开发者能够无缝集成SeleniumLibrary到他们的测试框架中,享受新Python版本带来的性能改进和语言特性。
其他改进和修复
除了上述主要改进外,本次版本还包括:
- 文档错误修正,提高了文档的准确性和易读性
- 依赖项版本更新,确保与其他生态组件的兼容性
- 内部代码优化和改进,提升了库的整体稳定性和性能
社区贡献
SeleniumLibrary的发展离不开活跃的社区支持。本次版本特别感谢Markus Leben、The Great Simo、Pavel和iarmhi等贡献者的宝贵工作和建议。社区的积极参与不仅帮助发现和修复问题,也推动了库功能的不断完善。
升级建议
对于现有用户,建议在测试环境中先行验证6.7.0版本,确保与现有测试用例的兼容性。特别是对于使用复杂元素定位或需要多语言支持的项目,新版本将带来明显的改进体验。对于计划迁移到Python 3.13的用户,这一版本提供了完美的支持基础。
SeleniumLibrary团队持续致力于提供稳定、可靠的Web自动化测试解决方案,6.7.0版本的发布再次证明了这一点。无论是新用户还是现有用户,都能从这个版本中获得更好的测试开发体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00