LightGBM训练过程中如何输出训练集评估指标
2025-05-13 07:42:30作者:温艾琴Wonderful
在使用LightGBM进行模型训练时,开发者经常需要监控训练过程中的评估指标变化。本文将详细介绍如何在LightGBM中正确配置以输出训练集的评估指标。
问题背景
许多LightGBM用户在使用LGBMRegressor或LGBMClassifier时,希望能够在训练过程中看到训练集上的评估指标变化。常见的误区是认为通过设置is_provide_training_metric参数就能实现这一目的,但实际上在Python API中这个参数并不存在。
正确配置方法
要在LightGBM训练过程中输出训练集评估指标,需要以下两个关键步骤:
- 将训练集同时指定为验证集
- 使用log_evaluation回调函数
具体实现代码如下:
from lightgbm import LGBMRegressor
from sklearn.datasets import make_regression
# 创建示例数据
X, y = make_regression(n_samples=500, n_features=4)
# 初始化模型
model = LGBMRegressor(
boosting_type='gbdt',
objective='l2',
metric='l1', # 设置评估指标
random_state=0,
num_leaves=100,
n_estimators=200
)
# 训练模型并输出日志
model.fit(
X,
y,
eval_set=[(X, y)], # 将训练集同时作为验证集
callbacks=[log_evaluation(period=5)] # 每5轮输出一次评估结果
)
评估指标配置说明
LightGBM提供了多种方式来指定评估指标:
- 在模型初始化时通过
metric参数设置 - 在fit方法中通过
eval_metric参数设置
这两种方式本质上是等效的,最终都会被传递到LightGBM的核心训练函数中。评估指标会应用于所有指定的验证集(包括训练集本身,如果被指定为验证集的话)。
技术要点总结
- LightGBM的Python API中没有
is_provide_training_metric参数 - 要监控训练集指标,必须显式地将训练集添加为验证集
- 使用log_evaluation回调函数控制日志输出频率
- 评估指标可以在模型初始化或fit方法中指定
通过正确配置这些参数,开发者可以全面监控模型在训练过程中的表现,包括训练集和验证集上的指标变化,这对于模型调优和防止过拟合非常有帮助。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C026
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869