ONNX Runtime Backend 项目教程
2024-08-25 15:23:03作者:何举烈Damon
1. 项目的目录结构及介绍
onnxruntime_backend/
├── CMakeLists.txt
├── LICENSE
├── README.md
├── backend
│ ├── CMakeLists.txt
│ ├── onnxruntime_backend.cc
│ ├── onnxruntime_backend.h
│ ├── onnxruntime_utils.cc
│ ├── onnxruntime_utils.h
│ └── ...
├── build.py
├── docs
│ └── ...
├── examples
│ └── ...
├── scripts
│ └── ...
└── tests
└── ...
目录结构介绍
- CMakeLists.txt: 项目的主要构建文件。
- LICENSE: 项目的许可证文件。
- README.md: 项目的说明文档。
- backend: 包含后端实现的主要代码文件。
- onnxruntime_backend.cc/h: ONNX Runtime 后端的主要实现文件。
- onnxruntime_utils.cc/h: 工具函数和辅助类。
- build.py: 构建脚本。
- docs: 项目文档。
- examples: 示例代码。
- scripts: 辅助脚本。
- tests: 测试代码。
2. 项目的启动文件介绍
项目的启动文件主要是 backend/onnxruntime_backend.cc,该文件包含了 ONNX Runtime 后端的主要实现逻辑。以下是该文件的关键部分:
#include "onnxruntime_backend.h"
#include "onnxruntime_utils.h"
namespace triton { namespace backend { namespace onnxruntime {
TRITONSERVER_Error* ONNXRuntimeBackend::Create(TRITONBACKEND_Model* model, ONNXRuntimeBackend** backend) {
// 创建后端实例
}
TRITONSERVER_Error* ONNXRuntimeBackend::Init() {
// 初始化后端
}
TRITONSERVER_Error* ONNXRuntimeBackend::Execute(TRITONBACKEND_Request** requests, const uint32_t request_count) {
// 执行推理请求
}
}}} // namespace triton::backend::onnxruntime
关键函数介绍
- Create: 创建后端实例。
- Init: 初始化后端。
- Execute: 执行推理请求。
3. 项目的配置文件介绍
项目的配置文件主要是 CMakeLists.txt,该文件定义了项目的构建规则和依赖项。以下是该文件的关键部分:
cmake_minimum_required(VERSION 3.12)
project(onnxruntime_backend)
# 设置 ONNX Runtime 版本
set(TRITON_BUILD_ONNXRUNTIME_VERSION "1.14.1")
# 添加子目录
add_subdirectory(backend)
# 设置安装路径
set(CMAKE_INSTALL_PREFIX "${CMAKE_BINARY_DIR}/install")
# 构建目标
add_executable(onnxruntime_backend backend/onnxruntime_backend.cc)
# 安装目标
install(TARGETS onnxruntime_backend DESTINATION backends/onnxruntime)
关键配置介绍
- cmake_minimum_required: 设置 CMake 的最低版本要求。
- project: 定义项目名称。
- set(TRITON_BUILD_ONNXRUNTIME_VERSION): 设置 ONNX Runtime 的版本。
- add_subdirectory: 添加子目录。
- add_executable: 定义构建目标。
- install: 定义安装目标。
以上是 ONNX Runtime Backend 项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870