ONNX Runtime Backend 项目教程
项目介绍
ONNX Runtime Backend 是一个为 Triton Inference Server 提供的后端,专门用于运行 ONNX 模型。该项目允许用户在 Triton Inference Server 中集成 ONNX Runtime,从而支持 ONNX 模型的推理。ONNX Runtime 是一个高性能的推理引擎,支持多种硬件加速,如 TensorRT 和 OpenVino。
项目快速启动
环境准备
首先,确保你已经安装了以下依赖:
- CMake
- ONNX Runtime
- Triton Inference Server
克隆项目
git clone https://github.com/triton-inference-server/onnxruntime_backend.git
cd onnxruntime_backend
构建项目
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX:PATH=`pwd`/install -DTRITON_BUILD_ONNXRUNTIME_VERSION=1.14.1 -DTRITON_BUILD_CONTAINER_VERSION=23.04 ..
make install
添加到 Triton 安装目录
将生成的 install/backends/onnxruntime 目录添加到 Triton 安装目录中。
应用案例和最佳实践
案例一:使用 ONNX Runtime 进行图像分类
假设你有一个预训练的 ONNX 模型 resnet50.onnx,你可以使用以下代码进行图像分类:
import onnxruntime as ort
import numpy as np
from PIL import Image
# 加载模型
session = ort.InferenceSession('resnet50.onnx')
# 加载图像
image = Image.open('test_image.jpg')
image = image.resize((224, 224))
image_data = np.array(image).transpose(2, 0, 1).astype(np.float32) / 255.0
image_data = np.expand_dims(image_data, axis=0)
# 运行推理
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
results = session.run([output_name], {input_name: image_data})
# 输出结果
print(results)
最佳实践
- 模型优化:使用 ONNX Runtime 的优化工具对模型进行优化,以提高推理性能。
- 硬件加速:根据硬件环境,启用 TensorRT 或 OpenVino 支持,以利用硬件加速。
典型生态项目
ONNX
ONNX(Open Neural Network Exchange)是一个开放的生态系统,允许不同的深度学习框架之间共享模型。ONNX Runtime 是 ONNX 的一个重要组成部分,支持多种深度学习框架导出的 ONNX 模型。
Triton Inference Server
Triton Inference Server 是一个开源的推理服务器,支持多种推理引擎,包括 TensorRT、ONNX Runtime 等。它提供了高性能的推理服务,支持动态批处理和模型管理。
TensorRT
TensorRT 是 NVIDIA 提供的高性能深度学习推理优化器和运行时库,可以显著提高推理速度。ONNX Runtime 支持 TensorRT 后端,可以在 NVIDIA GPU 上实现更快的推理。
OpenVino
OpenVino 是 Intel 提供的工具套件,用于优化和部署深度学习模型。ONNX Runtime 支持 OpenVino 后端,可以在 Intel CPU 和 GPU 上实现高效的推理。
通过这些生态项目的集成,ONNX Runtime Backend 提供了强大的推理能力,适用于各种高性能计算场景。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00