首页
/ ONNX Runtime Backend 项目教程

ONNX Runtime Backend 项目教程

2024-08-25 15:16:59作者:滑思眉Philip

项目介绍

ONNX Runtime Backend 是一个为 Triton Inference Server 提供的后端,专门用于运行 ONNX 模型。该项目允许用户在 Triton Inference Server 中集成 ONNX Runtime,从而支持 ONNX 模型的推理。ONNX Runtime 是一个高性能的推理引擎,支持多种硬件加速,如 TensorRT 和 OpenVino。

项目快速启动

环境准备

首先,确保你已经安装了以下依赖:

  • CMake
  • ONNX Runtime
  • Triton Inference Server

克隆项目

git clone https://github.com/triton-inference-server/onnxruntime_backend.git
cd onnxruntime_backend

构建项目

mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX:PATH=`pwd`/install -DTRITON_BUILD_ONNXRUNTIME_VERSION=1.14.1 -DTRITON_BUILD_CONTAINER_VERSION=23.04 ..
make install

添加到 Triton 安装目录

将生成的 install/backends/onnxruntime 目录添加到 Triton 安装目录中。

应用案例和最佳实践

案例一:使用 ONNX Runtime 进行图像分类

假设你有一个预训练的 ONNX 模型 resnet50.onnx,你可以使用以下代码进行图像分类:

import onnxruntime as ort
import numpy as np
from PIL import Image

# 加载模型
session = ort.InferenceSession('resnet50.onnx')

# 加载图像
image = Image.open('test_image.jpg')
image = image.resize((224, 224))
image_data = np.array(image).transpose(2, 0, 1).astype(np.float32) / 255.0
image_data = np.expand_dims(image_data, axis=0)

# 运行推理
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
results = session.run([output_name], {input_name: image_data})

# 输出结果
print(results)

最佳实践

  • 模型优化:使用 ONNX Runtime 的优化工具对模型进行优化,以提高推理性能。
  • 硬件加速:根据硬件环境,启用 TensorRT 或 OpenVino 支持,以利用硬件加速。

典型生态项目

ONNX

ONNX(Open Neural Network Exchange)是一个开放的生态系统,允许不同的深度学习框架之间共享模型。ONNX Runtime 是 ONNX 的一个重要组成部分,支持多种深度学习框架导出的 ONNX 模型。

Triton Inference Server

Triton Inference Server 是一个开源的推理服务器,支持多种推理引擎,包括 TensorRT、ONNX Runtime 等。它提供了高性能的推理服务,支持动态批处理和模型管理。

TensorRT

TensorRT 是 NVIDIA 提供的高性能深度学习推理优化器和运行时库,可以显著提高推理速度。ONNX Runtime 支持 TensorRT 后端,可以在 NVIDIA GPU 上实现更快的推理。

OpenVino

OpenVino 是 Intel 提供的工具套件,用于优化和部署深度学习模型。ONNX Runtime 支持 OpenVino 后端,可以在 Intel CPU 和 GPU 上实现高效的推理。

通过这些生态项目的集成,ONNX Runtime Backend 提供了强大的推理能力,适用于各种高性能计算场景。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
166
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
89
580
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
94
15
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
199
279
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
564