DescartesLabs Python库教程:创建产品并上传NDArray图像数据
2025-07-02 20:50:52作者:谭伦延
概述
本教程将详细介绍如何使用DescartesLabs Python库创建一个新的产品(Product)并上传NDArray格式的图像数据。这是遥感数据处理和管理的核心操作之一,适用于需要自定义数据存储和分析的场景。
准备工作
在开始之前,请确保已正确安装并配置了DescartesLabs Python库。本教程主要涉及以下关键概念:
- Product: 数据产品容器,用于组织和管理相关图像数据
- SpectralBand: 光谱波段定义,描述数据的波段特性
- Image: 具体的图像数据实例
- NDArray: NumPy数组格式的图像数据
创建新产品
生成唯一产品ID
import uuid
product_id = uuid.uuid4().hex
使用UUID生成唯一标识符,避免产品ID冲突。这是分布式系统中处理数据时的最佳实践。
定义产品元数据
from descarteslabs.catalog import Product
product = Product(
    id=product_id,
    name="Simple Image Upload",
    description="An example of creating a product...",
)
product.save()
这里我们创建了一个名为"Simple Image Upload"的新产品,并添加了描述信息。save()方法将产品元数据提交到目录服务。
配置光谱波段
遥感数据通常包含多个波段,我们需要为产品定义这些波段的信息:
from descarteslabs.catalog import SpectralBand
bands = ["red", "green", "blue"]
for band_index, band in enumerate(bands):
    SpectralBand(
        product=product,
        name=band,
        band_index=band_index,
        data_type="Float64",
        nodata=0,
        data_range=(0.0, 1.0),
        display_range=(0.0, 0.4),
    ).save()
关键参数说明:
- band_index: 波段索引(从0开始)
- data_type: 数据类型,这里使用64位浮点数
- nodata: 表示无效数据的值
- data_range: 数据的有效值范围
- display_range: 推荐的显示范围
管理产品权限
产品创建后,可以配置访问权限:
# 查看当前写入权限
print("Product writers:", product.writers)
# 添加写入权限
product.writers = ["email:someuser@gmail.com"]
product.save()
权限管理对于协作项目非常重要,可以控制谁能够修改产品元数据或添加新图像。
搜索并处理源图像
本示例使用巴黎地区的Sentinel-2影像作为数据源:
paris_bbox = {
    "type": "Polygon",
    "coordinates": [[...]]  # 巴黎边界坐标
}
search = (
    Product.get("esa:sentinel-2:l2a:v1")
    .images()
    .intersects(paris_bbox)
    .filter("2020-06-24" < p.acquired < "2020-06-30")
    .filter(p.cloud_fraction < 0.1)
    .limit(2)
)
images = search.collect()
搜索条件包括:
- 空间范围(巴黎边界)
- 时间范围(2020年6月24日至30日)
- 云量(<10%)
- 最多返回2景影像
创建影像镶嵌
将多景影像合并为单一RGB图像:
ndarray_mosaic, raster_info = images.mosaic("red green blue", raster_info=True)
mosaic()方法返回:
- ndarray_mosaic: NumPy数组格式的镶嵌结果
- raster_info: 包含地理参考信息的元数据
上传图像数据
将处理后的数据上传到我们创建的产品中:
image = Image(
    name="Paris", 
    product=product, 
    acquired="2020-06-24", 
    acquired_end="2020-06-30"
)
upload = image.upload_ndarray(ndarray_mosaic, raster_meta=raster_info)
upload.wait_for_completion()
print(upload.status)
上传过程可能需要几分钟时间,wait_for_completion()会阻塞直到上传完成。
验证和清理
上传完成后,可以验证图像是否已成功添加:
print(product.images().collect())
最后,清理测试产品:
task = product.delete_related_objects()
while task is not None:
    task.wait_for_completion()
    if task.status == "success":
        break
    task = product.delete_related_objects()
product.delete()
最佳实践
- 波段定义:确保波段定义与实际数据匹配,特别是数据类型和值范围
- 权限管理:生产环境中应严格控制产品权限
- 错误处理:实际应用中应添加适当的错误处理逻辑
- 性能考虑:大数据量上传时考虑分块处理
- 元数据完整性:确保提供完整的时空元数据
通过本教程,您应该已经掌握了使用DescartesLabs Python库创建产品和上传图像数据的基本流程。这套方法可以应用于各种遥感数据管理和分析场景。
登录后查看全文 
热门项目推荐
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
 docs
docsOpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
265
2.53 K
 kernel
kerneldeepin linux kernel
C
24
6
 pytorch
pytorchAscend Extension for PyTorch
Python
98
125
 ops-math
ops-math本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
151
 flutter_flutter
flutter_flutter暂无简介
Dart
555
124
 ohos_react_native
ohos_react_nativeReact Native鸿蒙化仓库
JavaScript
220
301
 cangjie_compiler
cangjie_compiler仓颉编译器源码及 cjdb 调试工具。
C++
117
93
 RuoYi-Vue3
RuoYi-Vue3🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
602
 cangjie_test
cangjie_test仓颉编程语言测试用例。
Cangjie
34
84
 Cangjie-Examples
Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.83 K