curves_for_object_detection项目使用教程
2024-09-11 03:47:53作者:舒璇辛Bertina
1. 项目目录结构及介绍
以下为curves_for_object_detection项目的基本目录结构及其简介:
.
├── gitignore # Git忽略文件
├── Calculate.py # 用于计算相关指标的Python脚本
├── ellipseList.txt # 可能存储椭圆列表数据(具体用途需查看源码注释)
├── results.txt # 存储实验结果的文本文件
├── run.py # 主要运行脚本,执行绘图等核心功能
├── LICENSE # 项目许可证文件
└── README.md # 项目说明文档,包含了项目基本介绍和使用指南
gitignore: 定义了Git在提交时应忽略的文件类型。Calculate.py: 包含计算过程,如IoU(Intersection over Union)和confidence值的相关处理。ellipseList.txt: 这个文件的具体作用可能与特定数据处理相关,但名称指示它可能涉及某些几何形状的数据。results.txt: 存放检测任务的结果数据,是绘制曲线的基础数据来源。run.py: 应用的核心脚本,调用相关函数绘制ROC曲线和PR曲线,并计算AUC与mAP值。LICENSE: 项目许可协议,规定了如何合法地使用此代码库。README.md: 提供了项目概述和基本使用步骤。
2. 项目的启动文件介绍
run.py
启动文件run.py是项目的入口点。通过运行这个脚本,你可以基于已经准备好的评估结果数据(通常保存于results.txt),自动完成ROC曲线和PR曲线的绘制工作。这两个曲线对于衡量目标检测算法的性能至关重要,它们分别展示了真阳性率(TP Rate)与假阳性率(FP Rate)之间的关系以及精确率(Precision)与召回率(Recall)的关系。此外,脚本还会输出AUC(Area Under Curve)和mAP(Mean Average Precision)值,这些都是评估目标检测模型性能的关键指标。
3. 项目的配置文件介绍
本项目中的配置信息较为简单,主要依赖于脚本内硬编码的参数或外部输入的数据文件。并没有单独列出的、传统的配置文件(如.yaml或.json)。配置主要是通过修改run.py中的参数或调整results.txt的内容来实现。如果你需要自定义配置,比如改变用于绘制曲线的数据集路径或修改绘图参数,这将直接在代码中进行或者通过更新数据文件间接完成。因此,理解Calculate.py和run.py中的变量和函数是关键,以适应不同的需求和数据格式。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
640
147
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100