Prometheus Node Exporter在混合EKS集群中的调度优化
在Kubernetes环境中部署监控系统时,Prometheus Node Exporter是一个常用的组件,用于收集节点级别的指标数据。然而,在AWS EKS混合集群(同时包含EC2和Fargate节点)环境中,Node Exporter的调度可能会遇到一些问题。
问题背景
当EKS集群同时使用EC2和Fargate节点时,Node Exporter的Pod可能会被错误地调度到Fargate节点上。由于Fargate节点的特殊性质,这些Pod将无法正常运行,导致它们一直处于Pending状态。这是因为:
- Fargate节点是托管的无服务器计算环境,无法安装和运行需要主机访问的DaemonSet
- Node Exporter需要访问主机级别的指标,这在Fargate环境中不可行
解决方案
通过在Node Exporter的部署配置中添加节点亲和性规则,可以确保它只被调度到EC2节点上。具体实现方法是使用以下affinity配置:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
这段配置明确告诉Kubernetes调度器:"不要将Pod调度到带有eks.amazonaws.com/compute-type=fargate标签的节点上"。
实现方式
对于使用Helm部署Prometheus Stack的用户,可以通过以下方式添加这个配置:
- 如果你直接使用
values.yaml文件:
prometheus-node-exporter:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
- 如果你使用Terraform管理Helm发布:
resource "helm_release" "prometheus-stack" {
values = [<<-EOF
prometheus-node-exporter:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
EOF
]
}
技术细节
-
requiredDuringSchedulingIgnoredDuringExecution:这是一个硬性要求,在调度时必须满足,但在Pod运行后不会重新评估
-
NotIn操作符:确保Pod不会被调度到具有指定值的节点上
-
eks.amazonaws.com/compute-type标签:这是EKS自动为节点添加的标签,用于标识节点类型
最佳实践
-
对于生产环境,建议始终在混合集群中明确指定Node Exporter的调度约束
-
即使当前集群没有Fargate节点,添加这个配置也是防御性编程的好习惯
-
可以考虑将这个配置作为标准实践纳入你的基础设施即代码模板中
总结
在混合EKS集群环境中,为Prometheus Node Exporter添加适当的节点亲和性规则是确保监控系统稳定运行的关键步骤。这个简单的配置调整可以避免Pod被错误调度到不兼容的Fargate节点上,从而保证监控数据的完整性和可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00