Prometheus Node Exporter在混合EKS集群中的调度优化
在Kubernetes环境中部署监控系统时,Prometheus Node Exporter是一个常用的组件,用于收集节点级别的指标数据。然而,在AWS EKS混合集群(同时包含EC2和Fargate节点)环境中,Node Exporter的调度可能会遇到一些问题。
问题背景
当EKS集群同时使用EC2和Fargate节点时,Node Exporter的Pod可能会被错误地调度到Fargate节点上。由于Fargate节点的特殊性质,这些Pod将无法正常运行,导致它们一直处于Pending状态。这是因为:
- Fargate节点是托管的无服务器计算环境,无法安装和运行需要主机访问的DaemonSet
- Node Exporter需要访问主机级别的指标,这在Fargate环境中不可行
解决方案
通过在Node Exporter的部署配置中添加节点亲和性规则,可以确保它只被调度到EC2节点上。具体实现方法是使用以下affinity配置:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
这段配置明确告诉Kubernetes调度器:"不要将Pod调度到带有eks.amazonaws.com/compute-type=fargate标签的节点上"。
实现方式
对于使用Helm部署Prometheus Stack的用户,可以通过以下方式添加这个配置:
- 如果你直接使用
values.yaml文件:
prometheus-node-exporter:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
- 如果你使用Terraform管理Helm发布:
resource "helm_release" "prometheus-stack" {
values = [<<-EOF
prometheus-node-exporter:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
EOF
]
}
技术细节
-
requiredDuringSchedulingIgnoredDuringExecution:这是一个硬性要求,在调度时必须满足,但在Pod运行后不会重新评估
-
NotIn操作符:确保Pod不会被调度到具有指定值的节点上
-
eks.amazonaws.com/compute-type标签:这是EKS自动为节点添加的标签,用于标识节点类型
最佳实践
-
对于生产环境,建议始终在混合集群中明确指定Node Exporter的调度约束
-
即使当前集群没有Fargate节点,添加这个配置也是防御性编程的好习惯
-
可以考虑将这个配置作为标准实践纳入你的基础设施即代码模板中
总结
在混合EKS集群环境中,为Prometheus Node Exporter添加适当的节点亲和性规则是确保监控系统稳定运行的关键步骤。这个简单的配置调整可以避免Pod被错误调度到不兼容的Fargate节点上,从而保证监控数据的完整性和可靠性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00