Prometheus Node Exporter在混合EKS集群中的调度优化
在Kubernetes环境中部署监控系统时,Prometheus Node Exporter是一个常用的组件,用于收集节点级别的指标数据。然而,在AWS EKS混合集群(同时包含EC2和Fargate节点)环境中,Node Exporter的调度可能会遇到一些问题。
问题背景
当EKS集群同时使用EC2和Fargate节点时,Node Exporter的Pod可能会被错误地调度到Fargate节点上。由于Fargate节点的特殊性质,这些Pod将无法正常运行,导致它们一直处于Pending状态。这是因为:
- Fargate节点是托管的无服务器计算环境,无法安装和运行需要主机访问的DaemonSet
- Node Exporter需要访问主机级别的指标,这在Fargate环境中不可行
解决方案
通过在Node Exporter的部署配置中添加节点亲和性规则,可以确保它只被调度到EC2节点上。具体实现方法是使用以下affinity配置:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
这段配置明确告诉Kubernetes调度器:"不要将Pod调度到带有eks.amazonaws.com/compute-type=fargate
标签的节点上"。
实现方式
对于使用Helm部署Prometheus Stack的用户,可以通过以下方式添加这个配置:
- 如果你直接使用
values.yaml
文件:
prometheus-node-exporter:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
- 如果你使用Terraform管理Helm发布:
resource "helm_release" "prometheus-stack" {
values = [<<-EOF
prometheus-node-exporter:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: eks.amazonaws.com/compute-type
operator: NotIn
values:
- fargate
EOF
]
}
技术细节
-
requiredDuringSchedulingIgnoredDuringExecution:这是一个硬性要求,在调度时必须满足,但在Pod运行后不会重新评估
-
NotIn操作符:确保Pod不会被调度到具有指定值的节点上
-
eks.amazonaws.com/compute-type标签:这是EKS自动为节点添加的标签,用于标识节点类型
最佳实践
-
对于生产环境,建议始终在混合集群中明确指定Node Exporter的调度约束
-
即使当前集群没有Fargate节点,添加这个配置也是防御性编程的好习惯
-
可以考虑将这个配置作为标准实践纳入你的基础设施即代码模板中
总结
在混合EKS集群环境中,为Prometheus Node Exporter添加适当的节点亲和性规则是确保监控系统稳定运行的关键步骤。这个简单的配置调整可以避免Pod被错误调度到不兼容的Fargate节点上,从而保证监控数据的完整性和可靠性。
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript043GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02chatgpt-on-wechat
基于大模型搭建的聊天机器人,同时支持 微信公众号、企业微信应用、飞书、钉钉 等接入,可选择GPT3.5/GPT-4o/GPT-o1/ DeepSeek/Claude/文心一言/讯飞星火/通义千问/ Gemini/GLM-4/Claude/Kimi/LinkAI,能处理文本、语音和图片,访问操作系统和互联网,支持基于自有知识库进行定制企业智能客服。Python017
热门内容推荐
最新内容推荐
项目优选









