Redisson中RLocalCachedMap与RMap性能差异分析
2025-05-09 17:42:46作者:袁立春Spencer
在使用Redisson进行缓存操作时,开发人员经常会面临选择RLocalCachedMap还是RMap的决策。本文将通过一个实际案例,深入分析这两种数据结构的性能表现差异及其背后的原因。
问题背景
在Redisson 3.29.0版本中,有开发者发现RLocalCachedMap的读取性能与普通RMap几乎相同,这与预期不符。RLocalCachedMap设计初衷是提供本地缓存功能,特别适合读多写少的场景,理论上应该比需要网络通信的RMap有显著性能优势。
测试场景分析
测试代码中同时使用了两种数据结构:
- RMap:基本的分布式映射结构,每次操作都需要网络通信
- RLocalCachedMap:带有本地缓存的映射结构,理论上高频读取应该从本地内存获取
测试方法是对同一键值进行多次读取操作,比较两者的耗时。结果显示两者性能相近,这表明RLocalCachedMap可能没有发挥本地缓存的优势。
关键发现
经过深入排查,发现问题根源在于测试代码中调用了map.destroy()方法。这个方法会销毁整个映射结构,包括本地缓存部分。每次测试后调用此方法,导致下一次测试时RLocalCachedMap需要重新建立本地缓存,无法积累缓存命中。
技术原理
RLocalCachedMap的工作原理是:
- 首次读取时从Redis服务器获取数据并存入本地内存
- 后续读取优先从本地内存获取
- 当数据变更时通过发布/订阅机制通知其他节点失效本地缓存
而RMap每次操作都是直接与Redis服务器通信,没有本地缓存层。因此,在正确的使用场景下,RLocalCachedMap的读取性能应该明显优于RMap。
正确使用方法
要充分发挥RLocalCachedMap的性能优势,需要注意:
- 避免频繁销毁和重建映射
- 合理配置缓存参数(如大小、淘汰策略)
- 确保相同的键被多次访问以利用缓存
- 根据业务场景选择合适的同步策略
性能优化建议
对于读多写少的场景,推荐以下配置:
- 设置适当的缓存大小
- 使用LRU等合理的淘汰策略
- 考虑使用INVALIDATE同步策略保证数据一致性
- 根据数据特性设置合理的TTL
结论
Redisson的RLocalCachedMap确实能够提供显著的性能优势,但需要正确使用。开发者应当理解其工作原理,避免在测试或生产环境中错误地销毁映射结构。通过合理配置和使用,RLocalCachedMap可以成为高性能缓存的有力工具。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704