Redisson中RLocalCachedMap与RMap性能差异分析
2025-05-09 10:07:32作者:袁立春Spencer
在使用Redisson进行缓存操作时,开发人员经常会面临选择RLocalCachedMap还是RMap的决策。本文将通过一个实际案例,深入分析这两种数据结构的性能表现差异及其背后的原因。
问题背景
在Redisson 3.29.0版本中,有开发者发现RLocalCachedMap的读取性能与普通RMap几乎相同,这与预期不符。RLocalCachedMap设计初衷是提供本地缓存功能,特别适合读多写少的场景,理论上应该比需要网络通信的RMap有显著性能优势。
测试场景分析
测试代码中同时使用了两种数据结构:
- RMap:基本的分布式映射结构,每次操作都需要网络通信
- RLocalCachedMap:带有本地缓存的映射结构,理论上高频读取应该从本地内存获取
测试方法是对同一键值进行多次读取操作,比较两者的耗时。结果显示两者性能相近,这表明RLocalCachedMap可能没有发挥本地缓存的优势。
关键发现
经过深入排查,发现问题根源在于测试代码中调用了map.destroy()方法。这个方法会销毁整个映射结构,包括本地缓存部分。每次测试后调用此方法,导致下一次测试时RLocalCachedMap需要重新建立本地缓存,无法积累缓存命中。
技术原理
RLocalCachedMap的工作原理是:
- 首次读取时从Redis服务器获取数据并存入本地内存
- 后续读取优先从本地内存获取
- 当数据变更时通过发布/订阅机制通知其他节点失效本地缓存
而RMap每次操作都是直接与Redis服务器通信,没有本地缓存层。因此,在正确的使用场景下,RLocalCachedMap的读取性能应该明显优于RMap。
正确使用方法
要充分发挥RLocalCachedMap的性能优势,需要注意:
- 避免频繁销毁和重建映射
- 合理配置缓存参数(如大小、淘汰策略)
- 确保相同的键被多次访问以利用缓存
- 根据业务场景选择合适的同步策略
性能优化建议
对于读多写少的场景,推荐以下配置:
- 设置适当的缓存大小
- 使用LRU等合理的淘汰策略
- 考虑使用INVALIDATE同步策略保证数据一致性
- 根据数据特性设置合理的TTL
结论
Redisson的RLocalCachedMap确实能够提供显著的性能优势,但需要正确使用。开发者应当理解其工作原理,避免在测试或生产环境中错误地销毁映射结构。通过合理配置和使用,RLocalCachedMap可以成为高性能缓存的有力工具。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896