Redisson项目中RLocalCachedMap强制从Redis获取数据的技术方案
背景介绍
在分布式系统中,缓存一致性是一个常见的技术挑战。Redisson作为Java的Redis客户端,提供了RLocalCachedMap这一数据结构,它结合了本地缓存和分布式存储的优势。RLocalCachedMap会在每个应用实例中维护一个本地缓存副本,同时通过Redis的发布/订阅机制来同步各个实例间的缓存变更。
问题场景
在实际生产环境中,开发者可能会遇到这样的需求:在大多数情况下希望利用本地缓存提高性能,但在某些关键业务场景中,又需要确保获取到最新的数据,即使这意味着牺牲一些性能。这种情况下,就需要一种机制能够强制从Redis获取数据,绕过本地缓存。
技术分析
Redisson的RLocalCachedMap默认会优先从本地缓存读取数据,这带来了显著的性能优势。然而,当多个实例并发操作时,可能会存在短暂的缓存不一致问题。虽然Redisson提供了缓存失效通知机制,但在高并发场景下,仍可能出现通知丢失或延迟的情况。
解决方案
经过深入研究和测试,发现可以通过以下方式实现强制从Redis获取数据:
-
使用cachedKeySet().remove()方法: 通过调用
cachedMap.cachedKeySet().remove(key),可以显式地从本地缓存中移除指定键。这样后续对该键的访问就会强制从Redis获取最新值。 -
性能影响评估: 测试表明,直接从本地缓存获取数据(约30ms/万次)与强制从Redis获取(约1425ms/万次)存在显著性能差异。因此,这种方案只适合在确实需要数据强一致性的场景中使用。
实现建议
在实际应用中,可以封装一个工具类,提供两种访问模式:
public class CacheAccessor {
private RLocalCachedMap<String, Object> cachedMap;
// 普通获取,使用本地缓存
public Object get(String key) {
return cachedMap.get(key);
}
// 强制从Redis获取
public Object getForceFromRedis(String key) {
cachedMap.cachedKeySet().remove(key);
return cachedMap.get(key);
}
}
注意事项
- 这种方案会增加Redis的负载,在高并发场景下需谨慎使用
- 需要考虑网络延迟对性能的影响
- 建议在关键业务路径上添加监控,评估强制刷新缓存的实际使用频率和性能影响
- 对于特别敏感的数据,可以考虑完全禁用本地缓存,直接使用RMap
结论
Redisson的RLocalCachedMap提供了灵活的数据访问方式。通过cachedKeySet().remove()方法可以实现按需强制从Redis获取数据的能力,为开发者提供了在性能与一致性之间的平衡选择。在实际应用中,应根据具体业务场景合理选择缓存策略,既保证系统性能,又满足业务对数据一致性的要求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00