Diamond项目在M1 Mac上运行时的PyTorch版本兼容性问题分析
问题背景
在机器学习项目开发中,硬件兼容性是一个常见挑战。Diamond项目作为一个基于PyTorch的开源项目,在M1 Mac设备上运行时遇到了一个典型的版本兼容性问题。本文将深入分析该问题的技术细节和解决方案。
问题现象
当开发者在M1 Mac设备上使用PyTorch 2.0.1版本运行Diamond项目的csgo分支时,执行命令PYTORCH_ENABLE_MPS_FALLBACK=1 python src/play.py
会遇到以下错误:
RuntimeError: don't know how to restore data location of torch.storage.UntypedStorage (tagged with mps:0)
这个错误表明PyTorch在尝试恢复存储数据位置时遇到了问题,特别是当数据被标记为使用MPS(Metal Performance Shaders)后端时。
技术分析
MPS后端简介
MPS是Apple为自家芯片(M1/M2等)提供的Metal Performance Shaders后端,它允许PyTorch利用Apple Silicon芯片的GPU加速能力。与传统的CUDA后端不同,MPS是专门为Apple设备优化的计算后端。
存储位置恢复问题
错误信息中提到的torch.storage.UntypedStorage
是PyTorch中用于管理原始存储数据的基础类。当PyTorch尝试从检查点(checkpoint)加载模型时,它需要恢复每个张量的存储位置(CPU、GPU/MPS等)。
在PyTorch 2.0.1版本中,对于标记为mps:0
(即第一个MPS设备)的存储数据,恢复机制存在缺陷,导致无法正确识别和处理这种存储位置。
解决方案
经过验证,将PyTorch升级到2.4.1版本可以解决这个问题。这表明:
- 这是一个已知的兼容性问题,在后续PyTorch版本中已修复
- Apple Silicon支持在PyTorch的后续版本中得到了持续改进
最佳实践建议
对于在Apple Silicon设备上使用PyTorch的开发者,建议:
- 保持PyTorch版本更新:Apple Silicon支持是一个相对较新的功能,新版本通常会修复许多兼容性问题
- 理解MPS限制:MPS后端虽然强大,但与CUDA并非100%兼容,某些操作可能不支持
- 使用回退机制:
PYTORCH_ENABLE_MPS_FALLBACK=1
环境变量允许在不支持MPS的操作中回退到CPU,这是一个有用的调试工具 - 测试不同版本:在项目开发初期,应该在不同PyTorch版本上进行充分测试,特别是当目标平台包括Apple Silicon设备时
结论
这个案例展示了硬件特定加速后端与深度学习框架之间的兼容性挑战。通过及时更新框架版本,开发者可以避免许多类似的兼容性问题。对于Diamond项目而言,维护团队已经通过升级依赖要求解决了这个问题,这体现了良好项目维护实践的重要性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









