Azure.Communication.Common 1.4.0版本发布:增强Teams集成与身份验证能力
项目背景
Azure.Communication.Common是微软Azure通信服务SDK中的基础库,为Azure通信服务提供了核心功能和通用组件。作为Azure通信服务SDK的基石,它定义了通信服务中的基本数据类型、身份验证机制和通用工具类,其他Azure通信服务模块如短信、语音、聊天等都依赖于这个基础库。
版本亮点
最新发布的1.4.0版本带来了两项重要功能增强,主要围绕Teams集成和身份验证机制的改进,为开发者提供了更强大的集成能力和更灵活的身份验证选项。
主要更新内容
1. Entra身份凭证支持Teams电话扩展功能
本次更新引入了对Azure.Core.TokenCredential的支持,通过新增的EntraCommunicationTokenCredentialOptions配置选项,允许使用Entra身份凭证(原Azure AD)的Teams许可用户通过Azure通信服务资源访问Teams电话扩展功能。
这一改进意味着:
- 开发者现在可以使用标准的Azure身份验证流程来访问Teams电话功能
- 企业用户可以直接使用其组织账户(Entra ID)来集成Teams电话服务
- 简化了身份验证流程,统一了Azure资源访问的凭证体系
2. 新增Teams扩展用户标识符支持
SDK新增了TeamsExtensionUserIdentifier通信标识符类型,专门用于处理格式为8:acs:{resourceId}_{tenantId}_{userId}的rawId。这种标识符格式是Teams扩展用户的标准表示方式。
这一改进带来的优势包括:
- 提供了对Teams扩展用户的标准化支持
- 简化了Teams用户与通信服务用户的映射关系处理
- 使开发者能够更轻松地识别和处理Teams扩展用户
3. 电话号码标识符功能增强
PhoneNumberIdentifier类新增了两个重要属性:
IsAnonymous:标识电话号码是否为匿名状态AssertedId:表示断言的ID,用于特殊场景下的身份验证
这些增强使得:
- 开发者可以更精细地控制电话号码相关的隐私设置
- 支持更复杂的身份验证场景
- 提供了处理特殊业务需求的能力
技术意义与应用场景
这次更新特别适合以下场景:
- 企业级应用集成Teams电话功能
- 需要将传统电话系统与Teams集成的解决方案
- 对通话隐私有特殊要求的应用场景
对于正在构建统一通信解决方案的开发者来说,这些新功能将大大简化与Microsoft Teams生态系统的集成工作,同时提供更符合企业安全标准的身份验证方式。
升级建议
对于正在使用Azure通信服务的开发者,特别是那些需要与Teams集成的项目,建议尽快评估升级到1.4.0版本。新引入的功能可以显著简化开发工作,特别是身份验证和用户标识处理方面的代码。
在升级时需要注意:
- 检查现有代码中对用户标识的处理逻辑
- 评估是否可以利用新的Entra身份验证流程简化现有实现
- 测试电话号码相关的功能是否受到新属性的影响
总结
Azure.Communication.Common 1.4.0版本的发布,标志着Azure通信服务与Microsoft Teams生态系统的集成达到了新的水平。通过提供原生的Teams扩展用户支持和Entra身份验证集成,开发者现在能够构建更强大、更安全的企业通信解决方案。这些改进不仅增强了功能,也简化了开发体验,是构建现代通信应用的重要一步。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00