DEYOLO 的项目扩展与二次开发
2025-06-14 21:44:56作者:胡易黎Nicole
1. 项目的基础介绍
DEYOLO 是一种面向跨模态目标检测的网络结构,它通过设计语义空间跨模态模块和双向解耦焦散模块,实现了 RGB-红外(RGB-IR)检测中心的相互增强。该项目的代码是基于 YOLOv8 模型,并在 ICPR 2024 的论文 "DEYOLO: Dual-Feature-Enhancement YOLO for Cross-Modality Object Detection" 中进行了详细的介绍。
2. 项目的核心功能
DEYOLO 的核心功能包括:
- 双语义增强通道权重分配模块(DECA):通过聚合特征空间中的跨模态信息,提高特征表示能力。
- 双空间增强像素权重分配模块(DEPA):学习模态内和模态间的依赖结构,产生具有更强位置感知能力的多模态表示。
- 双向解耦焦散模块:扩展网络在不同方向上的感受野,改善 DEYOLO 的表示质量。
3. 项目使用了哪些框架或库?
项目主要使用了以下框架或库:
- PyTorch:深度学习框架,用于模型定义和训练。
- YOLOv8:目标检测模型,作为项目的基础框架。
- Ultralytics:用于加载和训练 YOLO 模型的 Python 库。
4. 项目的代码目录及介绍
项目的代码目录结构如下:
- docs:存放项目文档。
- examples:包含示例代码和配置文件。
- imgs:存放项目相关的图像文件。
- ultralytics:包含 Ultralytics 库的源代码。
- .gitignore:定义 Git 忽略的文件。
- pre-commit-config.yaml:预提交钩子配置文件。
- LICENSE:项目许可证文件。
- MANIFEST.in:打包项目时包含的文件列表。
- README.md:项目说明文件。
- requirements.txt:项目依赖的 Python 包。
- setup.cfg、setup.py:项目安装和配置文件。
5. 对项目进行扩展或者二次开发的方向
- 增强模型泛化能力:通过数据增强、模型正则化等技术,提高模型在不同数据集和场景下的泛化能力。
- 添加新功能:例如,集成跟踪算法,实现目标跟踪功能;或者添加新的网络模块,如注意力机制,以进一步提高检测精度。
- 优化训练流程:通过自动化训练脚本和参数搜索,简化训练过程,提高训练效率。
- 跨平台部署:将模型部署到不同的平台,如移动设备或嵌入式系统,实现实时检测。
- 开源社区合作:积极参与开源社区,与其他研究者合作,共同改进和优化项目。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp课程页面空白问题的技术分析与解决方案3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp英语课程填空题提示缺失问题分析
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
238
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55