DEYOLO 的项目扩展与二次开发
2025-06-14 03:02:20作者:胡易黎Nicole
1. 项目的基础介绍
DEYOLO 是一种面向跨模态目标检测的网络结构,它通过设计语义空间跨模态模块和双向解耦焦散模块,实现了 RGB-红外(RGB-IR)检测中心的相互增强。该项目的代码是基于 YOLOv8 模型,并在 ICPR 2024 的论文 "DEYOLO: Dual-Feature-Enhancement YOLO for Cross-Modality Object Detection" 中进行了详细的介绍。
2. 项目的核心功能
DEYOLO 的核心功能包括:
- 双语义增强通道权重分配模块(DECA):通过聚合特征空间中的跨模态信息,提高特征表示能力。
- 双空间增强像素权重分配模块(DEPA):学习模态内和模态间的依赖结构,产生具有更强位置感知能力的多模态表示。
- 双向解耦焦散模块:扩展网络在不同方向上的感受野,改善 DEYOLO 的表示质量。
3. 项目使用了哪些框架或库?
项目主要使用了以下框架或库:
- PyTorch:深度学习框架,用于模型定义和训练。
- YOLOv8:目标检测模型,作为项目的基础框架。
- Ultralytics:用于加载和训练 YOLO 模型的 Python 库。
4. 项目的代码目录及介绍
项目的代码目录结构如下:
- docs:存放项目文档。
- examples:包含示例代码和配置文件。
- imgs:存放项目相关的图像文件。
- ultralytics:包含 Ultralytics 库的源代码。
- .gitignore:定义 Git 忽略的文件。
- pre-commit-config.yaml:预提交钩子配置文件。
- LICENSE:项目许可证文件。
- MANIFEST.in:打包项目时包含的文件列表。
- README.md:项目说明文件。
- requirements.txt:项目依赖的 Python 包。
- setup.cfg、setup.py:项目安装和配置文件。
5. 对项目进行扩展或者二次开发的方向
- 增强模型泛化能力:通过数据增强、模型正则化等技术,提高模型在不同数据集和场景下的泛化能力。
- 添加新功能:例如,集成跟踪算法,实现目标跟踪功能;或者添加新的网络模块,如注意力机制,以进一步提高检测精度。
- 优化训练流程:通过自动化训练脚本和参数搜索,简化训练过程,提高训练效率。
- 跨平台部署:将模型部署到不同的平台,如移动设备或嵌入式系统,实现实时检测。
- 开源社区合作:积极参与开源社区,与其他研究者合作,共同改进和优化项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878