Rustls项目中TLS 1.3签名方案扩展性问题的分析与解决
在Rustls项目中,开发者发现了一个关于TLS 1.3协议中签名方案(SignatureScheme)扩展性的重要问题。这个问题主要出现在尝试为Rustls添加后量子密码学(PQC)算法支持时,特别是当开发者尝试集成liboqs库中的ML-DSA签名算法时。
问题背景
Rustls是一个用Rust编写的现代化TLS库,以其安全性和性能著称。在TLS 1.3协议中,签名方案的选择是一个关键环节,它决定了客户端和服务器之间如何进行身份验证和数据完整性保护。
当开发者尝试为Rustls添加自定义的密码学提供程序(CryptoProvider),以支持后量子签名算法ML-DSA时,发现服务器端无法正确处理客户端提供的自定义签名方案。具体表现为服务器会返回"PeerIncompatible(NoSignatureSchemesInCommon)"错误,导致握手失败。
问题根源分析
深入分析Rustls源代码后发现,问题的核心在于服务器端对TLS 1.3签名方案的处理逻辑。在当前的实现中,服务器端会通过一个名为supported_in_tls13()的方法对客户端提供的签名方案进行过滤,只保留预定义在白名单中的方案。
这种设计导致了以下问题:
- 任何自定义的签名方案(使用SignatureScheme::Unknown变体)都会被自动过滤掉
- 服务器无法识别客户端提供的后量子签名方案
- 扩展性受限,无法灵活添加新的签名算法
解决方案
Rustls维护团队迅速响应并提出了两种解决方案思路:
-
直接扩展法:在SignatureScheme枚举中显式添加所需的签名方案变体,并确保它们在supported_in_tls13()中被正确启用。
-
更灵活的拒绝列表法:将当前的允许列表模式改为拒绝列表模式。拒绝列表只需要包含不安全的算法(如使用SHA1的算法和RSA-PKCS1),而其他算法则默认允许。这种方法提供了更好的扩展性,使未来添加新算法更加容易。
维护团队最终选择了第二种方案,因为它提供了更好的长期扩展性。这个变更已经通过拉取请求实现,并在Rustls 0.23.26版本中发布。
技术影响
这一变更对Rustls项目具有重要意义:
-
更好的扩展性:现在开发者可以更容易地为Rustls添加新的签名算法支持,特别是后量子密码学算法。
-
安全性保持:通过拒绝列表而非允许列表,在保持安全性的同时提高了灵活性。拒绝列表只需要关注已知不安全的算法。
-
后量子密码学支持:这一变更为Rustls支持ML-DSA等后量子签名算法扫清了道路,为应对未来的量子计算威胁做好准备。
开发者建议
对于需要在Rustls中使用自定义签名方案的开发者,现在可以:
- 确保使用Rustls 0.23.26或更高版本
- 自定义签名方案不再会被自动过滤
- 仍需确保实现的签名算法满足TLS协议的安全要求
这一改进展示了Rustls项目对安全性和扩展性的持续关注,同时也体现了开源社区快速响应和解决问题的能力。对于关注TLS协议实现和后量子密码学的研究人员和开发者来说,这无疑是一个积极的进展。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0125
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00