PreLAR 的安装和配置教程
2025-05-24 05:59:38作者:平淮齐Percy
1. 项目基础介绍
PreLAR(World Model Pre-training with Learnable Action Representation)是一个基于PyTorch的开源项目,主要研究如何通过学习动作表示来预训练世界模型。该项目旨在提高模型在视觉控制任务中的样本效率。
主要编程语言:Python
2. 项目使用的关键技术和框架
关键技术:世界模型预训练、动作表示学习
框架:PyTorch
3. 项目安装和配置的准备工作及详细步骤
准备工作
- 安装Python(建议使用Python 3.x版本)
- 安装conda(推荐使用conda来管理项目环境)
- 准备一个合适的GPU环境(项目需要用到GPU进行加速)
安装步骤
步骤1:克隆项目仓库
首先,需要将项目仓库克隆到本地环境中。打开命令行工具,执行以下命令:
git clone https://github.com/zhanglixuan0720/PreLAR.git
cd PreLAR
步骤2:创建并激活conda环境
项目使用conda环境来管理依赖。接下来,创建并激活conda环境:
conda env create -f environment.yaml
conda activate PreLAR
步骤3:安装依赖
在激活的conda环境中,执行以下命令来安装项目所需的所有依赖:
pip install -r requirements.txt
步骤4:安装Meta-world(如果需要)
如果项目需要使用Meta-world,则需要手动安装。执行以下命令:
pip install git+https://github.com/rlworkgroup/metaworld.git@a0009ed9a208ff9864a5c1368c04c273bb20dd06#egg=metaworld
或者,你也可以克隆Meta-world仓库并手动安装:
git clone https://github.com/Farama-Foundation/Metaworld.git
git checkout v2.0.0
pip install .
步骤5:下载数据集
项目需要使用Something-Something-V2数据集。你需要下载这个数据集,并执行以下命令来提取视频帧:
cd data/somethingv2
python extract_frames.py
然后,生成数据列表:
python process_somethingv2.py
步骤6:开始使用项目
安装和配置完成后,你可以按照项目的说明开始使用PreLAR进行训练或其他操作。
以上步骤为小白级操作,详细地介绍了PreLAR的安装和配置过程。按照这些步骤,你应该能够顺利地搭建PreLAR环境,并开始你的研究和实验。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30