推荐:CFPNet-M —— 实时多模态生物医学图像分割利器
2024-05-23 12:06:17作者:傅爽业Veleda
在医疗成像领域,准确和快速的图像分割是关键所在。今天,我们向您推荐一个创新的开源项目——CFPNet-M,这是一个轻量级的编码器-解码器网络,专为多模态生物医学图像实时分割而设计。该项目基于原始的CFPNet并进行了优化,适用于各种复杂的数据集。
项目介绍
CFPNet-M是一个高效且灵活的深度学习模型,能够在保持高精度的同时实现快速处理。它已经在多个医学图像数据集上进行了验证,包括DRIVE、ISBI-2012、红外乳腺图像、CVC-ClinicDB以及ISIC 2018。其设计的核心在于CFP(Channel-wise Feature Pyramid)模块,通过该模块,模型能够有效地捕捉不同尺度的信息,进而提升分割性能。

项目技术分析
CFPNet-M的架构结合了编码器-解码器的经典设计理念与通道级特征金字塔的概念。CFP模块通过通道间的交互增强特征表示,显著提高了对细节的捕获能力。整个网络结构紧凑,适合资源有限的环境,如嵌入式设备或移动应用中。
此外,CFPNet-M还提供了PyTorch版本,使得研究者和开发者能更方便地在各自平台上进行实验和部署。
应用场景
CFPNet-M可以在多种医疗成像任务中发挥优势,例如:
- 眼科:利用DRIVE数据集,用于眼底血管的自动分割。
- 肿瘤检测:在红外乳腺图像和ISIC 2018皮肤病变数据集中识别肿瘤区域。
- 内窥镜检查:在CVC-ClinicDB数据集上帮助内窥镜图像分析。
- 电子显微镜图像分析:在ISBI-2012数据集上进行细胞结构的精确分割。
项目特点
- 实时性:CFPNet-M在保证高精度的前提下实现了实时处理,极大地提升了工作效率。
- 轻量化设计:网络结构紧凑,减少计算资源需求,适应各类硬件平台。
- 广泛适用性:已成功应用于多模态生物医学图像分割,具有良好的泛化能力。
- 易于使用:提供PyTorch版本,并附带详细的训练和测试代码,便于复现结果和二次开发。
- 高精度:在多个数据集上的实验结果显示,CFPNet-M与现有的实时分割方法相比,表现出了优异的性能。
如果您正在寻找一种既能提高效率又能保证准确度的多模态生物医学图像分割解决方案,那么CFPNet-M绝对是值得一试的选择。立即加入,体验这个强大工具为您带来的便利吧!
引用:
@article{lou2023cfpnet,
title={Cfpnet-m: A light-weight encoder-decoder based network for multimodal biomedical image real-time segmentation},
author={Lou, Ange and Guan, Shuyue and Loew, Murray},
journal={Computers in Biology and Medicine},
pages={106579},
year={2023},
publisher={Elsevier}
}
@inproceedings{lou2021cfpnet,
title={Cfpnet: channel-wise feature pyramid for real-time semantic segmentation},
author={Lou, Ange and Loew, Murray},
booktitle={2021 IEEE International Conference on Image Processing (ICIP)},
pages={1894--1898},
year={2021},
organization={IEEE}
}
@inproceedings{lou2021dc,
title={DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation},
author={Lou, Ange and Guan, Shuyue and Loew, Murray H},
booktitle={Medical Imaging 2021: Image Processing},
volume={11596},
pages={115962T},
year={2021},
organization={International Society for Optics and Photonics}
}
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493