推荐:CFPNet-M —— 实时多模态生物医学图像分割利器
2024-05-23 12:06:17作者:傅爽业Veleda
在医疗成像领域,准确和快速的图像分割是关键所在。今天,我们向您推荐一个创新的开源项目——CFPNet-M,这是一个轻量级的编码器-解码器网络,专为多模态生物医学图像实时分割而设计。该项目基于原始的CFPNet并进行了优化,适用于各种复杂的数据集。
项目介绍
CFPNet-M是一个高效且灵活的深度学习模型,能够在保持高精度的同时实现快速处理。它已经在多个医学图像数据集上进行了验证,包括DRIVE、ISBI-2012、红外乳腺图像、CVC-ClinicDB以及ISIC 2018。其设计的核心在于CFP(Channel-wise Feature Pyramid)模块,通过该模块,模型能够有效地捕捉不同尺度的信息,进而提升分割性能。

项目技术分析
CFPNet-M的架构结合了编码器-解码器的经典设计理念与通道级特征金字塔的概念。CFP模块通过通道间的交互增强特征表示,显著提高了对细节的捕获能力。整个网络结构紧凑,适合资源有限的环境,如嵌入式设备或移动应用中。
此外,CFPNet-M还提供了PyTorch版本,使得研究者和开发者能更方便地在各自平台上进行实验和部署。
应用场景
CFPNet-M可以在多种医疗成像任务中发挥优势,例如:
- 眼科:利用DRIVE数据集,用于眼底血管的自动分割。
- 肿瘤检测:在红外乳腺图像和ISIC 2018皮肤病变数据集中识别肿瘤区域。
- 内窥镜检查:在CVC-ClinicDB数据集上帮助内窥镜图像分析。
- 电子显微镜图像分析:在ISBI-2012数据集上进行细胞结构的精确分割。
项目特点
- 实时性:CFPNet-M在保证高精度的前提下实现了实时处理,极大地提升了工作效率。
- 轻量化设计:网络结构紧凑,减少计算资源需求,适应各类硬件平台。
- 广泛适用性:已成功应用于多模态生物医学图像分割,具有良好的泛化能力。
- 易于使用:提供PyTorch版本,并附带详细的训练和测试代码,便于复现结果和二次开发。
- 高精度:在多个数据集上的实验结果显示,CFPNet-M与现有的实时分割方法相比,表现出了优异的性能。
如果您正在寻找一种既能提高效率又能保证准确度的多模态生物医学图像分割解决方案,那么CFPNet-M绝对是值得一试的选择。立即加入,体验这个强大工具为您带来的便利吧!
引用:
@article{lou2023cfpnet,
title={Cfpnet-m: A light-weight encoder-decoder based network for multimodal biomedical image real-time segmentation},
author={Lou, Ange and Guan, Shuyue and Loew, Murray},
journal={Computers in Biology and Medicine},
pages={106579},
year={2023},
publisher={Elsevier}
}
@inproceedings{lou2021cfpnet,
title={Cfpnet: channel-wise feature pyramid for real-time semantic segmentation},
author={Lou, Ange and Loew, Murray},
booktitle={2021 IEEE International Conference on Image Processing (ICIP)},
pages={1894--1898},
year={2021},
organization={IEEE}
}
@inproceedings{lou2021dc,
title={DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation},
author={Lou, Ange and Guan, Shuyue and Loew, Murray H},
booktitle={Medical Imaging 2021: Image Processing},
volume={11596},
pages={115962T},
year={2021},
organization={International Society for Optics and Photonics}
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143