推荐开源项目:BADGE - 批量主动学习的创新算法
2024-05-31 22:09:24作者:宗隆裙
项目介绍
BADGE 是一个实现批量主动学习(Batch Active Learning)算法的开源项目,基于论文《Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds》,该论文在ICLR 2020上进行了演讲。通过修改Kuan-Hao Huang的深度主动学习仓库,该项目为研究者和实践者提供了一个高效且灵活的工具,用于在数据标注有限的情况下优化深度学习模型。
项目技术分析
BADGE算法的核心在于利用多样性梯度嵌入来估计样本不确定性,从而选择最具信息性的样本来进行批处理查询。这种方法不仅可以捕获不同样本间的关系,还能有效地平衡采样的多样性和不确定性,减少了对大量人工标注的依赖。此外,项目最新更新中还包括了其通用算法形式——BAIT(Batch Active Learning via Information maTrices),进一步扩展了算法的应用范围。
项目及技术应用场景
BADGE与BAIT适用于各种需要数据标注但预算有限的场景,包括但不限于:
- 图像分类:如在CIFAR-10等数据集上的应用。
- 文本分类:在大规模文本数据集中选择有代表性的样本进行标注,以构建更准确的语义模型。
- 自然语言处理:如情感分析或机器翻译任务,可以有效减少需要人工审查的句子数量。
- 推荐系统:主动地获取用户反馈,以提高推荐算法的精度。
项目特点
- 灵活性:支持多种模型架构(如ResNet和MLP),可应用于各种类型的机器学习问题。
- 便捷性:提供了简单的命令行接口,轻松运行实验,例如只需一行代码就可以运行一个CIFAR-10上的BADGE实验。
- 全面比较:除了BADGE,还实现了论文中提及的各种基线算法,方便对比和分析不同策略的效果。
- 开放性:基于PyTorch和OpenML,与其他科研项目兼容,易于集成到现有的工作流程中。
- 可视化:提供脚本以生成类似论文中的结果图表,便于理解和解释实验结果。
如果你正在寻找一种方法来提高你的深度学习模型训练效率,而有限的标注资源成为瓶颈,那么BADGE绝对值得尝试。立即加入社区,探索如何以最少的人工标注成本获得最佳的模型性能!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1