推荐项目:XBM —— 跨批次内存嵌入学习
2024-05-22 04:05:35作者:裘旻烁
项目介绍
XBM,全称为Cross-Batch Memory for Embedding Learning,是一个在计算机视觉领域的深度度量学习(Deep Metric Learning)中实现的新颖方法。该项目源自于2020年CVPR大会的论文,并被选为口头报告。XBM旨在通过引入跨批次内存机制提升模型性能,尤其是在大规模数据集上的表现。
项目技术分析
XBM的核心在于其创新性的跨批次内存设计。这一机制有效地解决了传统训练中的批次内信息孤立问题,实现了批次间的记忆交互,从而增强模型的学习效果。此外,尽管引入了内存机制,但XBM仍保持了较低的内存占用——对于大型数据集,内存消耗不到1GB,这极大地优化了资源效率。
项目及技术应用场景
XBM的应用场景广泛,特别是在那些需要精确相似性计算的任务中,例如图像检索、人脸识别和内容推荐系统。在这些领域,XBM能帮助提高模型对相似或不相似实例的辨别力,从而改善用户体验或提升业务效率。
项目特点
- 显著提升性能:XBM在三个大型数据集上将R@1指标提升了12%至25%,展示了卓越的效果提升。
- 高效内存管理:内存占用低于1GB,即使处理大规模数据也能保持高效运行。
- 简洁实现:代码结构清晰,仅需几行代码即可实现复杂算法,便于理解和应用。
- 开放源码:XBM遵循CC-BY-NC 4.0许可证,鼓励学术研究和非商业用途的使用。
- 社区支持:如有任何疑问,可直接联系作者获取帮助。
为了在你的项目中体验XBM的强大功能,只需按照项目说明进行安装并开始训练:
pip install -r requirements.txt
python setup.py develop build
CUDA_VISIBLE_DEVICES=0 python3 tools/train_net.py --cfg configs/sample_config.yaml
如果你的项目或者研究涉及到深度度量学习,那么XBM无疑是值得尝试的优秀解决方案。记得在引用时注明原始论文:
@inproceedings{wang2020xbm,
title={Cross-Batch Memory for Embedding Learning},
author={Wang, Xun and Zhang, Haozhi and Huang, Weilin and Scott, Matthew R},
booktitle={CVPR},
year={2020}
}
@inproceedings{wang2019multi,
title={Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning},
author={Wang, Xun and Han, Xintong and Huang, Weilin and Dong, Dengke and Scott, Matthew R},
booktitle={CVPR},
year={2019}
}
赶紧行动起来,探索XBM带给你的无尽可能吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19