Vega/Altair 动态计算时间序列差异的可视化实现
2025-05-24 13:17:12作者:庞队千Virginia
概述
在数据可视化领域,Vega/Altair作为声明式可视化库,提供了强大的交互能力。本文将介绍如何利用Altair实现一个包含热力图和时间序列图的交互式仪表板,并动态计算两个选定时间序列之间的差异。
问题背景
我们有一个包含多个类别(a-e)的时间序列数据集,需要实现以下功能:
- 显示各时间序列最新日期的差异热力图
- 允许用户通过点击热力图选择两个时间序列
- 显示选中的两个时间序列的折线图
- 动态计算并显示这两个序列的差异
技术实现
数据准备
首先,我们生成随机时间序列数据并转换为长格式:
import pandas as pd
import numpy as np
import altair as alt
# 生成随机时间序列数据
ex_ts = pd.DataFrame(
np.random.random((10, 5)),
columns=['a', 'b', 'c', 'd', 'e'],
index=(pd.date_range(start=pd.to_datetime('today')-pd.Timedelta(9, unit='D'),
end=pd.to_datetime('today')).strftime('%Y-%m-%d'))
)
# 转换为长格式
ex_ts_long = ex_ts.stack().reset_index().set_axis(['date', 'category', 'diff'], axis=1)
热力图实现
计算各时间序列最新日期的差异矩阵:
def get_last_diff(i):
return ex_ts.sub(ex_ts.iloc[:,i], axis=0).iloc[-1,:]
ex_z = pd.concat([get_last_diff(i) for i in np.arange(0, 5)], axis=1)
.set_axis(ex_ts.columns, axis=1)
.stack().reset_index()
.set_axis(['x', 'y', 'diff'], axis=1)
.round(2)
创建交互式热力图:
select_x = alt.selection_point(fields=['x'], name='select_x')
select_y = alt.selection_point(fields=['y'], name='select_y')
base = alt.Chart(ex_z).encode(
x='x',
y='y',
color='diff'
).add_params(select_x).add_params(select_y)
hmap = base.mark_rect()
text = base.mark_text(fontWeight='bold').encode(text='diff', color=alt.value('red'))
hmap_chart = (hmap + text)
时间序列差异计算
实现动态计算两个选定序列差异的关键是使用Altair的transform_calculate和transform_filter:
# 基础时间序列图
line_1 = alt.Chart(ex_ts_long).mark_line().encode(
x='date',
y='diff',
color='category'
).transform_filter(select_x | select_y)
# 差异计算图
diff_chart = alt.Chart(ex_ts_long).mark_line(strokeDash=[5,5]).encode(
x='date',
y='diff_diff:Q'
).transform_filter(select_x & select_y).transform_calculate(
x_val = f"indexof({ex_ts.columns.tolist()}, select_x.x[0])",
y_val = f"indexof({ex_ts.columns.tolist()}, select_y.y[0])"
).transform_calculate(
diff_diff = f"datum.x_val == datum.y_val ? 0 : " +
f"datum.category == select_x.x[0] ? -datum.diff : " +
f"datum.category == select_y.y[0] ? datum.diff : 0"
).transform_aggregate(
diff_diff='sum(diff_diff)',
groupby=['date']
)
完整仪表板
将各图表组合成最终仪表板:
final_chart = alt.vconcat(
hmap_chart.properties(width=500, height=500),
alt.hconcat(
line_1.properties(width=400, height=200),
diff_chart.properties(width=400, height=200)
)
)
技术要点
- 交互选择:使用
selection_point实现热力图的点击选择功能 - 动态计算:通过
transform_calculate结合JavaScript表达式实现实时计算 - 条件逻辑:在Vega表达式中使用三元运算符处理不同情况
- 数据聚合:使用
transform_aggregate对计算结果进行汇总
应用场景
这种技术可以广泛应用于:
- 金融领域分析不同资产的价格差异
- 气象学中比较不同地区的温度变化
- 商业分析中监控产品指标间的关联性
通过这种交互式可视化,用户可以直观地探索时间序列数据之间的关系,并实时查看任意两个序列的差异变化。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120