Altair中动态计算时间序列差异的技术实现
2025-05-24 17:16:42作者:庞队千Virginia
概述
在数据可视化领域,Altair作为一个基于Vega-Lite的声明式可视化库,提供了强大的交互式图表创建能力。本文将深入探讨如何在Altair中实现动态计算并可视化两个选定时间序列之间的差异,这是一个在实际数据分析中非常有用的功能。
问题背景
假设我们有一个包含多个类别的时间序列数据集,我们需要实现以下可视化功能:
- 一个热力图显示最近观测日期上所有类别组合之间的差异
- 一个折线图显示选定的两个类别的时间序列
- 另一个折线图动态显示这两个选定类别之间的差异
技术实现
数据准备
首先,我们需要准备示例数据。创建一个包含随机值的DataFrame,模拟5个类别(a-e)在10天内的变化:
import pandas as pd
import numpy as np
import altair as alt
# 创建示例时间序列数据
ex_ts = pd.DataFrame(
np.random.random((10, 5)),
columns=['a', 'b', 'c', 'd', 'e'],
index=(pd.date_range(start=pd.to_datetime('today')-pd.Timedelta(9, unit='D'),
end=pd.to_datetime('today')).strftime('%Y-%m-%d'))
热力图实现
热力图需要显示最近日期上所有类别组合之间的差异。我们可以通过以下方式计算:
# 计算最近日期上所有类别组合的差异
def get_last_diff(i):
return ex_ts.sub(ex_ts.iloc[:,i], axis=0).iloc[-1,:]
ex_z = pd.concat([get_last_diff(i) for i in np.arange(0, 5)], axis=1)
.set_axis(ex_ts.columns, axis=1)
.stack().reset_index()
.set_axis(['x', 'y', 'diff'], axis=1)
.round(2)
交互式选择
为了实现交互式选择两个类别,我们需要设置两个选择器:
select_x = alt.selection_point(fields=['x'], name='select_x')
select_y = alt.selection_point(fields=['y'], name='select_y')
构建热力图
使用矩形标记和文本标记组合创建热力图:
base = alt.Chart(ex_z).encode(x='x', y='y', color='diff')
.add_params(select_x).add_params(select_y)
.properties(width=500, height=500)
hmap = base.mark_rect()
text = base.mark_text(fontWeight='bold').encode(text='diff', color=alt.value('red'))
hmap_chart = (hmap + text)
时间序列折线图
创建一个显示选定类别时间序列的折线图:
line_1 = alt.Chart(ex_ts_long).mark_line()
.encode(x='date', y='diff', color='category')
.transform_filter(select_x | select_y)
动态差异计算
这是最具挑战性的部分。我们需要动态计算两个选定时间序列的差异。可以通过以下方式实现:
# 创建计算差异的图表
diff_chart = alt.Chart(ex_ts_long).mark_line(color='red', strokeDash=[5,5])
.transform_filter(select_x | select_y)
.transform_aggregate(
groupby=['date'],
diff_x='sum(datum.x == select_x.x ? diff : 0)',
diff_y='sum(datum.x == select_y.y ? diff : 0)'
)
.transform_calculate(diff='datum.diff_y - datum.diff_x')
.encode(x='date:T', y='diff:Q')
最终组合
将所有图表组合在一起:
final_chart = alt.vconcat(
hmap_chart,
alt.hconcat(
line_1,
diff_chart
)
)
技术要点
-
动态计算:使用
transform_aggregate和transform_calculate在图表层面进行动态计算,而不是预先计算所有可能的组合。 -
条件表达式:在Vega表达式中使用条件语句(
? :)来筛选特定类别的值。 -
交互联动:通过
selection_point实现图表间的交互联动,使热力图的选择能够过滤折线图的数据。 -
数据转换:利用Altair的数据转换功能在可视化管道中进行复杂计算,而不是在Python层面预处理数据。
应用场景
这种技术可以应用于多种场景:
- 金融分析:比较不同股票或指数的表现差异
- 气象数据:比较不同地区温度变化的差异
- 业务指标:比较不同产品线或区域的销售趋势差异
总结
通过Altair强大的数据转换和交互功能,我们可以实现复杂的数据分析和可视化需求。本文展示的技术方案不仅解决了特定问题,也提供了一种在Altair中进行动态计算的通用模式,可以扩展到其他类似的数据分析场景中。关键在于理解Altair的数据转换管道和Vega表达式语法,这使得我们能够在可视化层面进行灵活的数据操作。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210