VLMEvalKit项目中的CMMMU数据集集成解析
2025-07-03 08:10:18作者:农烁颖Land
背景介绍
在视觉语言模型评估领域,CMMMU(Chinese Multi-Modal Multi-Choice Understanding)是一个重要的中文多模态理解评估数据集。该数据集包含选择题、判断题和填空题等多种题型,覆盖艺术与设计、商业、科学等多个领域,是评估模型中文多模态理解能力的重要基准。
数据集特点
CMMMU数据集具有以下显著特征:
- 多模态性:结合图像和文本信息进行问题解答
 - 题型多样:包含选择、判断和填空三种题型
 - 领域广泛:涵盖6大领域和24个子领域
 - 中文特性:专门针对中文语言环境设计
 
技术实现要点
在VLMEvalKit中集成CMMMU数据集主要涉及以下几个关键技术点:
1. 数据加载与处理
数据集以JSON格式存储,每个样本包含:
- 问题描述
 - 图像列表
 - 问题类型
 - 选项(选择题)
 - 正确答案
 
2. 提示词构建
针对不同题型设计了专门的提示模板:
- 选择题:提供问题和选项
 - 判断题:仅提供问题陈述
 - 填空题:提供问题描述
 
提示词构建时需要考虑图像占位符的替换,确保模型能正确处理多模态输入。
3. 结果解析与归一化
这是实现中最复杂的部分,需要对模型输出进行智能解析:
选择题解析
- 识别选项标记(A/B/C/D)
 - 处理括号格式的选项
 - 统计选项出现频率
 - 处理选项内容匹配
 
判断题解析
- 识别肯定/否定关键词
 - 处理模糊表达
 - 统计正负面关键词数量
 
填空题解析
- 提取关键子回答
 - 识别数字和字符串
 - 处理科学计数法
 - 中文数字格式化
 
4. 评估指标计算
评估过程采用分层统计:
- 子领域级别准确率
 - 领域级别准确率(各子领域加权平均)
 - 总体准确率
 
实现价值
CMMMU数据集的集成使得VLMEvalKit能够:
- 全面评估模型的中文多模态理解能力
 - 细粒度分析模型在不同领域的表现
 - 支持选择题、判断题和填空题的自动评估
 - 为中文多模态研究提供标准化评测基准
 
使用建议
对于需要使用该数据集的开发者,建议:
- 仔细阅读数据格式说明
 - 理解不同题型的评估逻辑
 - 针对中文特性优化模型输出
 - 关注子领域间的性能差异分析
 
该实现为中文多模态模型评估提供了重要工具,将有力推动中文多模态研究的发展。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447