VLMEvalKit项目中的CMMMU数据集集成解析
2025-07-03 15:28:34作者:农烁颖Land
背景介绍
在视觉语言模型评估领域,CMMMU(Chinese Multi-Modal Multi-Choice Understanding)是一个重要的中文多模态理解评估数据集。该数据集包含选择题、判断题和填空题等多种题型,覆盖艺术与设计、商业、科学等多个领域,是评估模型中文多模态理解能力的重要基准。
数据集特点
CMMMU数据集具有以下显著特征:
- 多模态性:结合图像和文本信息进行问题解答
- 题型多样:包含选择、判断和填空三种题型
- 领域广泛:涵盖6大领域和24个子领域
- 中文特性:专门针对中文语言环境设计
技术实现要点
在VLMEvalKit中集成CMMMU数据集主要涉及以下几个关键技术点:
1. 数据加载与处理
数据集以JSON格式存储,每个样本包含:
- 问题描述
- 图像列表
- 问题类型
- 选项(选择题)
- 正确答案
2. 提示词构建
针对不同题型设计了专门的提示模板:
- 选择题:提供问题和选项
- 判断题:仅提供问题陈述
- 填空题:提供问题描述
提示词构建时需要考虑图像占位符的替换,确保模型能正确处理多模态输入。
3. 结果解析与归一化
这是实现中最复杂的部分,需要对模型输出进行智能解析:
选择题解析
- 识别选项标记(A/B/C/D)
- 处理括号格式的选项
- 统计选项出现频率
- 处理选项内容匹配
判断题解析
- 识别肯定/否定关键词
- 处理模糊表达
- 统计正负面关键词数量
填空题解析
- 提取关键子回答
- 识别数字和字符串
- 处理科学计数法
- 中文数字格式化
4. 评估指标计算
评估过程采用分层统计:
- 子领域级别准确率
- 领域级别准确率(各子领域加权平均)
- 总体准确率
实现价值
CMMMU数据集的集成使得VLMEvalKit能够:
- 全面评估模型的中文多模态理解能力
- 细粒度分析模型在不同领域的表现
- 支持选择题、判断题和填空题的自动评估
- 为中文多模态研究提供标准化评测基准
使用建议
对于需要使用该数据集的开发者,建议:
- 仔细阅读数据格式说明
- 理解不同题型的评估逻辑
- 针对中文特性优化模型输出
- 关注子领域间的性能差异分析
该实现为中文多模态模型评估提供了重要工具,将有力推动中文多模态研究的发展。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178