Milvus集群环境下Proxy组件内存管理问题分析与解决方案
2025-05-04 04:13:27作者:宣利权Counsellor
问题背景
在Milvus 2.5版本的集群部署环境中,用户在进行大规模并发DQL(数据查询语言)测试时发现了一个值得关注的现象:Proxy组件在执行完测试后,内存使用量维持在1.2GB以上,未能回落到正常水平。这一现象在多次测试中均能复现,引起了开发团队的重视。
现象描述
测试环境配置如下:
- 部署模式:集群模式
- 消息队列:Pulsar
- 数据集规模:2000万条
- 并发参数:30个并发客户端持续运行12小时
- 测试类型:混合搜索、查询和搜索操作
测试完成后,Proxy组件内存使用曲线显示:
- 在测试初期内存快速上升
- 测试过程中内存稳定在较高水平
- 测试结束后内存未如预期下降,而是保持在1.2GB以上
技术分析
开发团队针对此问题进行了多方面的深入调查:
内存泄漏排查
首先怀疑是否存在内存泄漏问题,团队采取了以下验证措施:
- 使用AddressSanitizer(ASAN)工具进行内存泄漏检测
- 添加jemalloc内存分配统计日志
- 分析内存分配和释放模式
验证结果表明:
- ASAN未检测到典型的内存泄漏模式
- jemalloc统计显示已正确释放未使用的内存空间
- 内存分配器确实将空闲内存归还给了系统
操作系统内存管理机制
进一步分析发现,问题的根源可能与操作系统层面的内存管理策略有关:
- Linux内核的内存回收机制相对保守
- 当系统内存充足时,内核倾向于保留"inactive"内存而不立即回收
- 这种策略虽然提高了性能,但会导致内存使用量显示偏高
对比验证
团队进行了对比测试:
- 将Proxy内存限制设置为1GB后,问题不再出现
- 这表明在内存受限环境下,系统会采取更积极的内存回收策略
解决方案
基于以上分析,开发团队提出了几种可行的解决方案:
推荐方案:合理设置内存限制
在生产环境中,建议为Proxy组件设置适当的内存限制:
- 根据负载特点确定合理的内存上限
- 通过Kubernetes资源限制实现
- 这种方案简单有效,已在测试中得到验证
进阶调优方案
对于需要更精细控制的环境,可以考虑:
- 调整系统内存回收参数:
sysctl -w vm.vfs_cache_pressure=200
- 禁用MADV_FREE特性(需评估性能影响)
- 这些调整可以促使系统更积极地回收缓存内存
技术原理深入
Jemalloc与Linux内存管理
现代内存分配器(如jemalloc)与操作系统之间存在复杂的交互:
- Jemalloc会将空闲内存通过madvise系统调用告知内核
- Linux内核根据当前内存压力决定是否立即回收
- 在内存充足时,内核可能延迟回收以提高性能
Cgroup内存统计
容器环境下的内存统计有其特殊性:
- Cgroup统计包含多种内存类型(active/inactive)
- 显示的内存使用量可能包含可回收但未立即回收的部分
- 这解释了为什么工具显示内存已释放而使用量仍高
最佳实践建议
基于此次问题的经验,我们建议Milvus用户:
- 生产环境务必设置合理的内存限制
- 监控内存使用趋势而非绝对值
- 性能测试时要考虑内存回收的时间因素
- 不同版本的内核可能有不同的内存管理行为
结论
Milvus Proxy组件的高内存占用现象并非真正的内存泄漏,而是现代内存管理机制下的正常表现。通过合理配置资源限制,可以有效地控制内存使用量。这一案例也提醒我们,在云原生环境下,理解应用内存行为需要综合考虑应用层、运行时和操作系统多个层面的交互。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44