Milvus集群在Pod Kill混沌测试后QueryNode组件异常重启问题分析
问题背景
在Milvus分布式向量数据库的生产环境中,我们经常会遇到节点异常重启的情况。近期在Kubernetes集群上进行的混沌测试中发现了一个值得关注的问题:当Milvus集群经历多次Pod Kill操作后恢复运行,QueryNode组件在进行并发读写请求时会出现异常重启现象。这个问题在Milvus 2.5版本和master分支中均有复现,属于关键性缺陷。
问题现象
在混沌测试过程中,当对Milvus集群执行多次Pod Kill操作后,系统虽然能够自动恢复运行,但在后续的并发读写请求压力下,QueryNode组件会出现以下异常表现:
- QueryNode Pod频繁重启,日志中显示线程池执行异常
- 堆栈跟踪显示Folly线程池执行过程中出现异常终止
- 问题发生时通常伴随着Segment加载和查询操作
技术分析
根本原因
通过对日志和代码的分析,我们发现问题的核心在于Folly线程池的执行异常。具体表现为:
-
线程池任务执行中断:当QueryNode处理并发请求时,Folly线程池中的任务执行被意外中断,导致整个线程崩溃。
-
资源管理问题:在Pod Kill后恢复过程中,系统资源(特别是内存)可能没有完全释放干净,导致后续操作中出现异常。
-
消息队列处理异常:在并发DDL和DML操作下,消息队列的消费位置管理可能出现问题,触发RocksMQ的安全机制。
影响范围
该问题主要影响:
- 使用Kubernetes部署的Milvus集群
- 经历过节点异常或主动重启的环境
- 高并发查询和写入并发的场景
- QueryNode组件稳定性
解决方案
针对这个问题,开发团队已经采取了以下改进措施:
-
线程池稳定性增强:优化了Folly线程池的任务处理逻辑,确保异常情况下能够正确恢复。
-
资源清理机制:改进了Pod重启时的资源释放流程,确保前一次运行的残留资源被彻底清理。
-
消息队列处理优化:完善了DispatcherManager的关闭逻辑,确保所有dispatcher被正确关闭,避免消息队列流泄漏。
-
错误处理机制:增加了更完善的错误捕获和处理逻辑,防止单个任务失败影响整个线程池。
验证情况
该修复已在Milvus 2.5版本(2.5-20250306-89bc9459-amd64)中得到验证,确认解决了QueryNode在混沌测试后的异常重启问题。测试结果表明:
- QueryNode组件在Pod Kill后能够稳定恢复
- 并发读写操作不再触发组件重启
- 系统整体稳定性显著提升
最佳实践建议
对于生产环境部署Milvus的用户,建议:
- 使用最新稳定版本,确保包含此问题的修复
- 在Kubernetes环境中配置合理的资源限制和Pod重启策略
- 对于关键业务场景,建议进行充分的混沌测试验证系统稳定性
- 监控QueryNode组件的重启次数和资源使用情况
总结
Milvus作为分布式向量数据库,其稳定性对生产环境至关重要。这次发现的QueryNode异常重启问题揭示了在异常恢复和并发控制方面需要持续优化的方向。通过这次问题的分析和解决,不仅修复了具体缺陷,也为系统架构的健壮性积累了宝贵经验。建议所有用户及时升级到包含此修复的版本,以获得更稳定的使用体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









