Milvus集群在Pod Kill混沌测试后QueryNode组件异常重启问题分析
问题背景
在Milvus分布式向量数据库的生产环境中,我们经常会遇到节点异常重启的情况。近期在Kubernetes集群上进行的混沌测试中发现了一个值得关注的问题:当Milvus集群经历多次Pod Kill操作后恢复运行,QueryNode组件在进行并发读写请求时会出现异常重启现象。这个问题在Milvus 2.5版本和master分支中均有复现,属于关键性缺陷。
问题现象
在混沌测试过程中,当对Milvus集群执行多次Pod Kill操作后,系统虽然能够自动恢复运行,但在后续的并发读写请求压力下,QueryNode组件会出现以下异常表现:
- QueryNode Pod频繁重启,日志中显示线程池执行异常
- 堆栈跟踪显示Folly线程池执行过程中出现异常终止
- 问题发生时通常伴随着Segment加载和查询操作
技术分析
根本原因
通过对日志和代码的分析,我们发现问题的核心在于Folly线程池的执行异常。具体表现为:
-
线程池任务执行中断:当QueryNode处理并发请求时,Folly线程池中的任务执行被意外中断,导致整个线程崩溃。
-
资源管理问题:在Pod Kill后恢复过程中,系统资源(特别是内存)可能没有完全释放干净,导致后续操作中出现异常。
-
消息队列处理异常:在并发DDL和DML操作下,消息队列的消费位置管理可能出现问题,触发RocksMQ的安全机制。
影响范围
该问题主要影响:
- 使用Kubernetes部署的Milvus集群
- 经历过节点异常或主动重启的环境
- 高并发查询和写入并发的场景
- QueryNode组件稳定性
解决方案
针对这个问题,开发团队已经采取了以下改进措施:
-
线程池稳定性增强:优化了Folly线程池的任务处理逻辑,确保异常情况下能够正确恢复。
-
资源清理机制:改进了Pod重启时的资源释放流程,确保前一次运行的残留资源被彻底清理。
-
消息队列处理优化:完善了DispatcherManager的关闭逻辑,确保所有dispatcher被正确关闭,避免消息队列流泄漏。
-
错误处理机制:增加了更完善的错误捕获和处理逻辑,防止单个任务失败影响整个线程池。
验证情况
该修复已在Milvus 2.5版本(2.5-20250306-89bc9459-amd64)中得到验证,确认解决了QueryNode在混沌测试后的异常重启问题。测试结果表明:
- QueryNode组件在Pod Kill后能够稳定恢复
- 并发读写操作不再触发组件重启
- 系统整体稳定性显著提升
最佳实践建议
对于生产环境部署Milvus的用户,建议:
- 使用最新稳定版本,确保包含此问题的修复
- 在Kubernetes环境中配置合理的资源限制和Pod重启策略
- 对于关键业务场景,建议进行充分的混沌测试验证系统稳定性
- 监控QueryNode组件的重启次数和资源使用情况
总结
Milvus作为分布式向量数据库,其稳定性对生产环境至关重要。这次发现的QueryNode异常重启问题揭示了在异常恢复和并发控制方面需要持续优化的方向。通过这次问题的分析和解决,不仅修复了具体缺陷,也为系统架构的健壮性积累了宝贵经验。建议所有用户及时升级到包含此修复的版本,以获得更稳定的使用体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00