Minimind项目处理超长预训练数据集的内存优化方案
2025-05-11 09:53:50作者:凤尚柏Louis
在大型语言模型(LLM)的预训练过程中,处理超大规模数据集是一个常见但极具挑战性的任务。本文将以Minimind项目为例,深入探讨如何高效处理超长预训练数据集,特别是针对内存占用过大的问题提供专业解决方案。
问题背景分析
当使用Minimind进行预训练时,典型的处理流程会先将整个数据集加载到内存中,这会导致几个显著问题:
- 内存峰值过高:读取500万行约4.4G的JSON数据时,内存峰值可达24G
- 资源浪费:最终稳定内存占用仅6G,中间过程存在大量内存浪费
- 扩展性限制:处理500G以上数据集时,单机内存根本无法容纳
核心解决方案
1. 分块读取技术
最直接有效的解决方案是采用分块(chunk)读取技术,避免一次性加载整个数据集:
chunksize = 10**6 # 每次读取100万行
for chunk in pd.read_json(args.data_path, lines=True, chunksize=chunksize):
# 对每个块进行预处理和筛选
chunk = chunk[chunk['text'].str.len() < 512]
# 进一步处理或保存
这种方法将大文件分解为可管理的小块,显著降低内存峰值需求。
2. 使用Dask进行并行处理
对于更复杂的场景,可以考虑使用Dask框架:
import dask.dataframe as dd
df = dd.read_json(args.data_path, lines=True)
# Dask会自动处理并行化和内存管理
processed = df[df['text'].str.len() < 512].compute()
Dask的优势在于:
- 自动并行化处理
- 延迟计算机制
- 内存溢出时自动使用磁盘交换
3. 迭代式数据集加载
PyTorch提供了IterableDataset类,专为大规模数据设计:
from torch.utils.data import IterableDataset
class JsonIterableDataset(IterableDataset):
def __init__(self, file_path):
self.file_path = file_path
def __iter__(self):
with open(self.file_path) as f:
for line in f:
data = json.loads(line)
if len(data['text']) < 512:
yield data
这种方法完全避免了将整个数据集加载到内存,是最节省内存的方案。
进阶优化策略
1. 预处理与持久化
对于反复使用的数据集,建议进行预处理后持久化:
- 首次加载时进行筛选和清理
- 将处理后的数据保存为更高效的格式(如HDF5、Parquet)
- 后续训练直接加载预处理后的数据
2. 内存映射技术
使用内存映射文件技术可以显著降低内存需求:
df = pd.read_json(args.data_path, lines=True, memory_map=True)
3. 数据压缩与编码优化
- 使用更紧凑的数据类型(如category代替object)
- 对文本数据进行压缩编码
- 删除不必要的列和元数据
分布式训练考量
在分布式训练环境下,还需考虑:
- 数据分片策略:确保每个GPU节点处理不同的数据子集
- 同步机制:协调各节点的训练进度
- 检查点合并:定期合并各节点的模型参数
最佳实践建议
- 从小规模开始:先用小数据集验证流程,再扩展到全量数据
- 监控资源使用:实时监控CPU/GPU内存和磁盘I/O
- 混合使用技术:根据实际情况组合多种优化方法
- 考虑硬件限制:设计数据处理流程时要考虑目标硬件的配置
通过实施这些策略,即使是500G以上的超大规模数据集,也可以在有限的内存资源下高效处理,为Minimind项目的预训练任务提供可靠支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110