chonkie-ts 的安装和配置教程
1. 项目基础介绍和主要编程语言
chonkie-ts 是一个开源文本分块库,专为 TypeScript 开发者设计。它旨在提供一种轻量级、快速且易于使用的文本分块解决方案。该库适用于需要在项目中实现文本分块功能的开发者,特别是那些需要为 Retrieval-Augmented Generation (RAG) 应用程序进行文本分块的开发者。chonkie-ts 是原始 Python 版本 chonkie 库的 TypeScript 端口,它保留了原始库的核心功能并添加了一些 TypeScript 特有的特性。
该项目的主要编程语言是 TypeScript,它为 JavaScript 提供了静态类型检查和其他强大的功能,使得大型项目的开发更加可靠和易于维护。
2. 项目使用的关键技术和框架
chonkie-ts 使用以下关键技术和框架:
- TypeScript: 作为 JavaScript 的超集,提供了静态类型检查和面向对象编程的特性。
- Node.js: 作为运行时环境,允许 chonkie-ts 在服务器端执行。
- NPM (Node Package Manager): 用于管理项目的依赖包。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在开始安装 chonkie-ts 之前,请确保您的系统中已经安装了以下工具:
- Node.js: chonkie-ts 需要一个 JavaScript 运行时环境。
- NPM: 用于安装 chonkie-ts 及其依赖。
您可以通过在命令行中运行以下命令来检查这些工具的安装情况:
node -v
npm -v
如果您的系统尚未安装这些工具,请先安装它们。
安装步骤
-
克隆项目仓库
首先,您需要克隆 chonkie-ts 的 GitHub 仓库到本地计算机。打开命令行并运行以下命令:
git clone https://github.com/chonkie-inc/chonkie-ts.git这将在当前目录下创建一个名为
chonkie-ts的新文件夹,其中包含了项目的所有文件。 -
进入项目目录
使用以下命令进入项目目录:
cd chonkie-ts -
安装依赖
在项目目录中,运行以下命令来安装所有必要的依赖:
npm install这将使用 NPM 来安装项目
package.json文件中列出的所有依赖。 -
构建项目
安装完依赖后,您可能需要构建项目。这通常是通过以下命令完成的:
npm run build这将编译 TypeScript 代码到 JavaScript,确保所有类型正确无误。
-
开始使用
现在,您已经成功安装并配置了 chonkie-ts,可以开始在您的 TypeScript 项目中使用它了。以下是一个简单的示例,展示如何导入并使用
TokenChunker:import { TokenChunker } from 'chonkie'; async function main() { const chunker = await TokenChunker.create(); const chunks = await chunker.chunk('这是一段需要分块的文本。'); for (const chunk of chunks) { console.log(chunk.text); console.log(chunk.token_count); } } main();
以上就是 chonkie-ts 的安装和配置教程。如果您在安装或使用过程中遇到任何问题,可以查看项目的官方文档或向社区寻求帮助。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00