Chonkie项目v1.0.4版本发布:代码分块与嵌入增强
Chonkie是一个专注于文本分块处理的Python库,它提供了多种先进的分块算法和工具,帮助开发者高效地处理各种文本数据。在最新发布的v1.0.4版本中,Chonkie引入了多项重要功能增强,特别是针对代码分块和嵌入处理的能力有了显著提升。
代码分块功能重磅登场
本次更新的亮点之一是全新的CodeChunker分块器,它专门为处理代码文件而设计。与普通文本分块不同,代码具有特定的语法结构和逻辑层次,传统的分块方法往往难以保持代码的完整性。CodeChunker通过理解代码的结构,能够智能地将代码分成有意义的片段。
使用CodeChunker非常简单,首先需要安装额外的依赖:
pip install "chonkie[code]"
然后就可以像使用其他分块器一样使用它:
from chonkie import CodeChunker
# 初始化分块器,指定编程语言
chunker = CodeChunker(language="python")
# 获取代码内容
code = """
def calculate_sum(a, b):
# 这是一个加法函数
return a + b
class Calculator:
def __init__(self):
self.result = 0
def add(self, value):
self.result += value
return self.result
"""
# 执行分块
chunks = chunker(code)
CodeChunker支持超过100种编程语言,能够识别函数、类、注释等代码结构元素,确保每个分块都保持语义完整性。这对于代码搜索、代码分析等应用场景特别有价值。
JinaAI嵌入支持
v1.0.4版本还新增了对JinaAI嵌入模型的支持。JinaAI提供了高质量的文本嵌入服务,现在可以无缝集成到Chonkie的分块流程中。
要使用这一功能,需要先安装相关依赖:
pip install "chonkie[jina]"
使用示例:
from chonkie import JinaEmbeddings, SemanticChunker
# 初始化嵌入模型和分块器
embeddings = JinaEmbeddings()
chunker = SemanticChunker(embeddings)
# 分块文本
text = "这是一段需要分块的长文本..."
chunks = chunker(text)
JinaAI嵌入特别适合需要高质量语义分块的场景,如文档检索、问答系统等。
分块后处理增强
新版本引入了两个重要的分块后处理工具:OverlapRefinery和EmbeddingsRefinery。
重叠上下文增强
OverlapRefinery可以为分块添加重叠上下文,这在许多NLP任务中非常有用,因为它可以确保分块边界处的信息不会丢失。
from chonkie import RecursiveChunker, OverlapRefinery
chunker = RecursiveChunker()
refinery = OverlapRefinery("gpt2") # 使用GPT2分词器
text = "..." # 长文本
chunks = chunker(text)
chunks_with_overlap = refinery(chunks)
嵌入预处理
EmbeddingsRefinery允许在分块阶段就预计算嵌入向量,这对于后续加载到向量数据库特别方便。
from chonkie import EmbeddingsRefinery
# 假设已经有一个嵌入模型
embeddings = ...
refinery = EmbeddingsRefinery(embeddings)
# 对已有分块进行嵌入处理
embedded_chunks = refinery(chunks)
技术实现细节
-
代码分块器实现:
CodeChunker底层使用了先进的语法分析技术,能够理解不同编程语言的结构。它首先构建代码的抽象语法树(AST),然后根据语法结构进行分块,确保每个分块都是语义完整的单元。 -
重叠上下文算法:
OverlapRefinery实现了智能的重叠策略,可以根据分块内容和边界情况动态调整重叠区域的大小,既保证了上下文完整性,又避免了过多的冗余。 -
嵌入预处理优化:
EmbeddingsRefinery在设计上考虑了大规模处理的效率问题,支持批量处理和多线程计算,可以高效地为大量分块生成嵌入向量。
应用场景建议
-
代码搜索系统:使用
CodeChunker处理代码库,然后结合嵌入和向量搜索,可以构建强大的代码搜索工具。 -
文档问答系统:利用
SemanticChunker和JinaAI嵌入,可以创建能够理解文档语义的问答系统。 -
长文本分析:对于需要处理长文档的应用,
OverlapRefinery可以显著提升模型对文本边界信息的理解能力。
Chonkie v1.0.4的这些新功能为文本处理提供了更强大的工具集,特别是对于需要处理代码或需要高质量语义分块的场景。开发者现在可以更灵活地选择适合自己需求的分块策略和后处理方式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00