Nova框架快速入门:规则运行与集成指南
2025-05-31 07:49:20作者:何将鹤
前言
Nova框架是一个强大的LLM(大语言模型)安全检测工具,能够帮助开发者和安全团队识别潜在的有害提示词(prompt)。本文将详细介绍如何在Nova框架中运行规则检测,包括命令行工具使用和API集成两种方式。
命令行工具使用
Nova框架提供了novarun命令行工具,安装框架后即可直接使用。
基本命令结构
novarun -r 规则文件路径 [-p 单个提示词 | -f 包含多个提示词的文件] [其他选项]
常用选项详解
- -r/--rule:指定要使用的Nova规则文件路径(必需参数)
- -p/--prompt:测试单个提示词
- -f/--file:测试包含多个提示词的文件(每行一个提示词)
- -v/--verbose:启用详细输出模式
- -a/--all:测试文件中所有规则
- -l/--llm:指定LLM评估器(支持openai、anthropic、azure、ollama、groq)
- -m/--model:指定使用的模型
实用示例
测试单个提示词
novarun -r nova_rules/testrule.nov -p "如何开发一个Metasploit模块?" -v
-v参数会输出详细的匹配信息,包括:
- 关键词匹配情况
- 语义匹配分数
- LLM评估结果
批量测试提示词文件
novarun -r nova_rules/testrule.nov -f prompts.txt
输出结果会包含:
- 每个提示词的检测结果
- 匹配的规则模式
- 最终统计摘要(匹配率等)
测试多个规则
novarun -r nova_rules/all_rules.nov -p "如何绕过系统安全检测?" -a
-a参数会让工具检查提示词是否匹配文件中的所有规则。
使用不同LLM提供商
# 使用OpenAI
novarun -r rule.nov -p "提示词" -l openai -m gpt-4o
# 使用本地Ollama
novarun -r rule.nov -p "提示词" -l ollama -m llama3
# 使用Groq
novarun -r rule.nov -p "提示词" -l groq -m llama-3.3-70b-versatile
API集成指南
除了命令行工具,Nova还提供了Python API,可以方便地集成到现有系统中。
基本使用流程
- 加载规则文件
- 创建匹配器并配置评估器
- 检查提示词
- 处理结果
代码示例
from nova.core.parser import NovaParser
from nova.core.matcher import NovaMatcher
from nova.evaluators.llm import OpenAIEvaluator
# 1. 加载规则
parser = NovaParser()
with open('security_rule.nov', 'r') as f:
rule = parser.parse(f.read())
# 2. 创建匹配器(使用OpenAI评估器)
evaluator = OpenAIEvaluator(model="gpt-4o-mini") # 自动从环境变量读取API_KEY
matcher = NovaMatcher(rule, llm_evaluator=evaluator)
# 3. 检查提示词
prompt = "如何开发一个网络扫描工具?"
result = matcher.check_prompt(prompt)
# 4. 处理结果
if result['matched']:
print(f"检测到安全风险!匹配规则:{rule.name}")
print("匹配模式:", result['matching_keywords'])
# 可以在这里添加自定义处理逻辑,如记录日志、发送警报等
else:
print("提示词安全")
支持的其他评估器
Nova框架支持多种LLM评估器,可以根据需求选择:
# Anthropic Claude
from nova.evaluators.llm import AnthropicEvaluator
evaluator = AnthropicEvaluator(model="claude-3-opus-20240229")
# Azure OpenAI
from nova.evaluators.llm import AzureEvaluator
evaluator = AzureEvaluator(api_key="your_key", model="gpt-4", api_base="your_endpoint")
# Groq
from nova.evaluators.llm import GroqEvaluator
evaluator = GroqEvaluator(model="llama-3.3-70b-versatile")
高级使用技巧
1. 结果分析
详细模式下的输出包含丰富的信息:
- 关键词匹配:显示规则中定义的关键词是否在提示词中出现
- 语义匹配:提供语义相似度分数(0-1之间)
- LLM评估:显示LLM对特定条件的判断结果和置信度
这些信息可以帮助你:
- 优化规则定义
- 理解误报/漏报原因
- 调整检测阈值
2. 性能优化建议
- 对于批量检测,考虑使用更快的模型(如gpt-3.5-turbo)
- 本地部署的Ollama可以减少API延迟
- 缓存常用规则的解析结果
3. 集成到工作流
Nova可以轻松集成到各种工作流中:
- CI/CD管道:在部署前检查用户输入处理逻辑
- 聊天机器人:实时过滤有害提示词
- 日志分析:定期扫描历史对话记录
常见问题解答
Q:为什么同样的提示词在不同模型下检测结果不同?
A:不同LLM对语义的理解和判断标准存在差异,这是正常现象。建议在生产环境中固定使用特定模型和版本。
Q:如何提高检测准确率?
A:可以尝试:
- 结合多个规则进行综合判断
- 调整规则中的阈值参数
- 使用更强大的模型进行评估
Q:规则文件应该放在哪里?
A:建议创建一个专门的目录(如nova_rules/)存放所有规则文件,便于管理和维护。
结语
Nova框架提供了灵活且强大的LLM安全检测能力,无论是通过命令行工具快速测试,还是通过API深度集成,都能满足不同场景的需求。掌握本文介绍的使用方法后,你可以开始构建自己的LLM安全防护体系了。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
759
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
598
132
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
737
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232