Nova框架快速入门:规则运行与集成指南
2025-05-31 14:05:21作者:何将鹤
前言
Nova框架是一个强大的LLM(大语言模型)安全检测工具,能够帮助开发者和安全团队识别潜在的有害提示词(prompt)。本文将详细介绍如何在Nova框架中运行规则检测,包括命令行工具使用和API集成两种方式。
命令行工具使用
Nova框架提供了novarun命令行工具,安装框架后即可直接使用。
基本命令结构
novarun -r 规则文件路径 [-p 单个提示词 | -f 包含多个提示词的文件] [其他选项]
常用选项详解
- -r/--rule:指定要使用的Nova规则文件路径(必需参数)
- -p/--prompt:测试单个提示词
- -f/--file:测试包含多个提示词的文件(每行一个提示词)
- -v/--verbose:启用详细输出模式
- -a/--all:测试文件中所有规则
- -l/--llm:指定LLM评估器(支持openai、anthropic、azure、ollama、groq)
- -m/--model:指定使用的模型
实用示例
测试单个提示词
novarun -r nova_rules/testrule.nov -p "如何开发一个Metasploit模块?" -v
-v参数会输出详细的匹配信息,包括:
- 关键词匹配情况
- 语义匹配分数
- LLM评估结果
批量测试提示词文件
novarun -r nova_rules/testrule.nov -f prompts.txt
输出结果会包含:
- 每个提示词的检测结果
- 匹配的规则模式
- 最终统计摘要(匹配率等)
测试多个规则
novarun -r nova_rules/all_rules.nov -p "如何绕过系统安全检测?" -a
-a参数会让工具检查提示词是否匹配文件中的所有规则。
使用不同LLM提供商
# 使用OpenAI
novarun -r rule.nov -p "提示词" -l openai -m gpt-4o
# 使用本地Ollama
novarun -r rule.nov -p "提示词" -l ollama -m llama3
# 使用Groq
novarun -r rule.nov -p "提示词" -l groq -m llama-3.3-70b-versatile
API集成指南
除了命令行工具,Nova还提供了Python API,可以方便地集成到现有系统中。
基本使用流程
- 加载规则文件
- 创建匹配器并配置评估器
- 检查提示词
- 处理结果
代码示例
from nova.core.parser import NovaParser
from nova.core.matcher import NovaMatcher
from nova.evaluators.llm import OpenAIEvaluator
# 1. 加载规则
parser = NovaParser()
with open('security_rule.nov', 'r') as f:
rule = parser.parse(f.read())
# 2. 创建匹配器(使用OpenAI评估器)
evaluator = OpenAIEvaluator(model="gpt-4o-mini") # 自动从环境变量读取API_KEY
matcher = NovaMatcher(rule, llm_evaluator=evaluator)
# 3. 检查提示词
prompt = "如何开发一个网络扫描工具?"
result = matcher.check_prompt(prompt)
# 4. 处理结果
if result['matched']:
print(f"检测到安全风险!匹配规则:{rule.name}")
print("匹配模式:", result['matching_keywords'])
# 可以在这里添加自定义处理逻辑,如记录日志、发送警报等
else:
print("提示词安全")
支持的其他评估器
Nova框架支持多种LLM评估器,可以根据需求选择:
# Anthropic Claude
from nova.evaluators.llm import AnthropicEvaluator
evaluator = AnthropicEvaluator(model="claude-3-opus-20240229")
# Azure OpenAI
from nova.evaluators.llm import AzureEvaluator
evaluator = AzureEvaluator(api_key="your_key", model="gpt-4", api_base="your_endpoint")
# Groq
from nova.evaluators.llm import GroqEvaluator
evaluator = GroqEvaluator(model="llama-3.3-70b-versatile")
高级使用技巧
1. 结果分析
详细模式下的输出包含丰富的信息:
- 关键词匹配:显示规则中定义的关键词是否在提示词中出现
- 语义匹配:提供语义相似度分数(0-1之间)
- LLM评估:显示LLM对特定条件的判断结果和置信度
这些信息可以帮助你:
- 优化规则定义
- 理解误报/漏报原因
- 调整检测阈值
2. 性能优化建议
- 对于批量检测,考虑使用更快的模型(如gpt-3.5-turbo)
- 本地部署的Ollama可以减少API延迟
- 缓存常用规则的解析结果
3. 集成到工作流
Nova可以轻松集成到各种工作流中:
- CI/CD管道:在部署前检查用户输入处理逻辑
- 聊天机器人:实时过滤有害提示词
- 日志分析:定期扫描历史对话记录
常见问题解答
Q:为什么同样的提示词在不同模型下检测结果不同?
A:不同LLM对语义的理解和判断标准存在差异,这是正常现象。建议在生产环境中固定使用特定模型和版本。
Q:如何提高检测准确率?
A:可以尝试:
- 结合多个规则进行综合判断
- 调整规则中的阈值参数
- 使用更强大的模型进行评估
Q:规则文件应该放在哪里?
A:建议创建一个专门的目录(如nova_rules/)存放所有规则文件,便于管理和维护。
结语
Nova框架提供了灵活且强大的LLM安全检测能力,无论是通过命令行工具快速测试,还是通过API深度集成,都能满足不同场景的需求。掌握本文介绍的使用方法后,你可以开始构建自己的LLM安全防护体系了。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp课程页面空白问题的技术分析与解决方案5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析8 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
239
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55