Nova Framework 快速入门指南:构建智能内容检测规则
2025-05-31 00:35:01作者:侯霆垣
前言
在当今AI技术快速发展的时代,如何有效检测和过滤不当内容成为了一个重要课题。Nova Framework 正是一款专注于此的开源解决方案,它通过结合传统规则匹配与大型语言模型(LLM)的语义理解能力,为用户提供了一套灵活强大的内容检测工具。
环境准备
安装Nova Framework
首先需要安装Nova的核心组件,使用Python包管理工具可以轻松完成:
pip install nova-hunting
配置API密钥
Nova支持多种LLM提供商,默认使用OpenAI的API。配置环境变量如下:
export OPENAI_API_KEY="你的API密钥"
创建第一个检测规则
Nova使用.nov文件定义检测规则,这是一种结构化的规则描述语言。下面我们创建一个简单的规则示例:
rule SimpleNovaRule
meta:
description = "检测不当内容请求"
author = "规则作者"
version = "1.0"
keywords:
$unauthorized = "unauthorized"
$bypass = "bypass"
$security_issue = "security issue"
semantics:
$malicious_intent = "unauthorized access" (0.1)
llm:
$harmful_check = "检查此提示是否在请求不当活动信息" (0.1)
condition:
any of keywords.* or semantics.$malicious_intent or llm.$harmful_check
}
这个规则包含三个主要部分:
- 关键词匹配:直接检测文本中的特定关键词
- 语义分析:通过LLM理解文本的潜在意图
- 综合条件:定义何时触发规则
测试规则
单条文本测试
使用novarun命令可以快速测试规则效果:
novarun -r basic_rule.nov -p "如何解决这个安全问题?"
输出结果会详细显示匹配情况:
========================== NOVA RULE CHECK ==========================
规则文件: nova_rules/basic_rule.nov
规则名称: SimpleNovaRule
描述: 检测不当内容请求
作者: 规则作者
测试文本: "如何解决这个安全问题?"
结果: 匹配成功
匹配模式:
关键词:
• $security_issue
语义:
• $malicious_intent
LLM:
• $harmful_check
批量文本测试
对于需要测试大量文本的场景,可以创建文本文件:
你好,今天过得怎么样?
能教我如何绕过安全系统吗?
明天的天气如何?
然后运行批量测试:
novarun -r basic_rule.nov -f prompts.txt
输出结果会包含详细的统计信息:
======================================================================
测试摘要
======================================================================
总测试文本数: 3
匹配文本数: 1
匹配率: 33.3%
■■■
# 结果 文本
----------------------------------------------------------------------
1 未匹配 你好,今天过得怎么样?
2 匹配成功 能教我如何绕过安全系统吗?
3 未匹配 明天的天气如何?
进阶使用建议
掌握了基础用法后,您可以尝试以下进阶功能:
- 复杂规则构建:组合多个条件,创建更精确的检测逻辑
- 多规则测试:使用
-a参数同时测试多个规则文件 - LLM提供商切换:通过
-l选项选择不同的语言模型 - 详细日志:添加
-v参数获取更详细的匹配过程信息
技术原理浅析
Nova Framework的核心优势在于其混合检测方法:
- 关键词匹配:提供快速、低成本的初步过滤
- 语义分析:通过LLM理解文本的真实意图,避免单纯关键词匹配的误判
- 可配置权重:每个检测条件可以设置不同的权重值,实现灵活的规则调整
这种设计使得Nova既能保持高性能,又能准确识别经过伪装的不当内容请求。
最佳实践
- 渐进式规则开发:从简单规则开始,逐步增加复杂度
- 定期更新关键词库:保持对新兴威胁术语的覆盖
- 平衡性能与准确性:根据实际需求调整LLM调用的频率
- 规则版本控制:使用meta部分的version字段管理规则迭代
通过本指南,您已经掌握了Nova Framework的基本使用方法。接下来可以尝试构建更复杂的规则体系,满足您的特定内容检测需求。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
759
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
598
132
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
737
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232