Prebid.js 9.47.0版本发布:广告竞价生态的重要更新
Prebid.js项目简介
Prebid.js是一个开源的头部竞价解决方案,广泛应用于数字广告领域。它允许发布商在广告服务器调用之前,同时向多个需求方平台(DSP)发起竞价请求,从而最大化广告收益。作为行业标准工具,Prebid.js通过模块化架构支持各种广告格式和交易模式,包括显示广告、视频广告和原生广告等。
9.47.0版本核心更新内容
新增适配器支持
本次版本引入了全新的Nativery Bid Adapter,为开发者提供了对接Nativery广告平台的能力。这个新增的适配器扩展了Prebid.js的生态系统,使发布商能够接入更多样化的广告需求来源。
核心功能优化
在用户身份识别方面,本次更新进行了重要调整:将用户eids(外部身份标识)从user.eids迁移至user.ext.eids位置。这一变更遵循了OpenRTB协议的最新规范,确保了与其他广告技术组件的更好兼容性。同时,UID1 Eids模块现在支持inserter和matcher功能,为用户身份匹配提供了更灵活的配置选项。
性能与稳定性提升
针对PBS(Prebid Server)适配器,修复了tmax参数必须为整数的关键问题,避免了因参数类型错误导致的竞价异常。Conversant适配器移除了对废弃的bidRequest.userid属性的依赖,使代码更加健壮。Kargo适配器则解决了Safari 15.6浏览器中存储模拟导致的错误问题。
测试与构建流程改进
开发团队对测试框架进行了多项优化:
- 删除了过时的Nightwatch测试工具
- 更新了端到端测试的日志配色方案
- 修复了Bliink适配器的间歇性测试失败问题
- 解决了Aduntius适配器在Safari 15.6上的测试失败问题
构建系统方面也进行了现代化改造:
- 移除了gulp-sourcemaps等过时依赖
- 用plugin-error和fancy-log替代了废弃的gutil
- 优化了覆盖率计算流程,现在只需单次执行即可完成
- 升级了Babel运行时插件并将其移至devDependencies
代码质量提升
本次发布清理了多个模块中不必要的polyfill导入,包括:
- 移除了find、findIndex和includes等现代JavaScript已原生支持方法的polyfill
- 删除了es5-shim等不再需要的兼容层
- Xe工具库移除了findIndex polyfill
- Advangelist工具库移除了includes polyfill
这些清理工作减小了最终打包体积,提升了运行时性能。
其他重要改进
- 捷克广告ID模块增加了ID格式验证,确保数据质量
- Cwire适配器现在会在竞价负载中包含网络带宽信息
- Mediasquare适配器支持ORTB协议和userIdAsEids
- Pubmatic适配器增加了前次竞价信息支持
- Blue BMS适配器将共享代码提取到工具类中,提高了代码复用性
- Adverxo适配器现在允许adUnitId为字符串类型,提高了灵活性
技术影响分析
9.47.0版本虽然是一个常规更新,但在几个关键方面为Prebid.js生态系统带来了实质性改进:
-
协议兼容性增强:通过将eids移至标准位置和遵循最新OpenRTB规范,确保了与其他广告技术栈的无缝集成。
-
性能优化:polyfill的移除和构建流程的现代化,将显著减小打包体积并提升运行时效率,特别有利于移动端用户。
-
测试可靠性提升:针对不同浏览器环境的测试修复,特别是Safari兼容性问题,将提高整体解决方案的稳定性。
-
开发者体验改善:构建工具的更新和共享代码的提取,使自定义开发和适配器开发更加高效。
这些改进共同推动了Prebid.js作为开源头部竞价解决方案的成熟度和可靠性,为数字广告生态的健康发展提供了坚实的技术基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00