首页
/ 差分隐私扩散模型(DPDM)开源项目教程

差分隐私扩散模型(DPDM)开源项目教程

2025-05-17 17:32:00作者:羿妍玫Ivan

1. 项目介绍

差分隐私扩散模型(DPDM)是一种结合了差分隐私机制和深度学习技术的图像生成模型。它能够在保护数据隐私的同时,生成高质量的图像。本项目由NVIDIA公司发布,旨在为研究者和开发者提供一个强大的工具,用于探索差分隐私在深度学习中的应用。

2. 项目快速启动

环境准备

首先,确保您的系统已经安装了PyTorch 1.11.0和CUDA 11.3。然后,使用以下命令安装项目所需的依赖:

pip install -r requirements.txt

数据准备

根据需要生成的数据类型,创建相应的文件夹并下载数据集:

mkdir -p data/raw/
mkdir -p data/processed/

例如,对于CIFAR-10数据集,执行以下命令:

wget -P data/raw/ https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
python dataset_tool.py --source data/raw/cifar-10-python.tar.gz --dest data/processed/cifar10.zip

对于ImageNet数据集,首先下载ImageNet Object Localization Challenge数据,然后运行:

python dataset_tool.py --source=data/raw/imagenet/ILSVRC/Data/CLS-LOC/train --dest=data/processed/imagenet.zip --resolution=32x32 --transform=center-crop

预训练模型评估

在开始之前,您可能需要评估预训练模型的FID(Fréchet Inception Distance)指标。以下是一些评估命令的示例:

python precompute_data_mnist_fid_statistics.py
python precompute_data_mnist_fid_statistics.py --test
python precompute_data_mnist_fid_statistics.py --is_fmnist

模型训练

使用以下命令开始训练模型:

python main.py --mode train --workdir <new_directory> --config <dataset>

其中 <new_directory> 是您希望存储训练结果的目录,<dataset> 是您选择的配置文件。

模型评估

使用以下命令对模型进行评估:

python main.py --mode eval --workdir <new_directory> --config <config_file> --model.ckpt=<checkpoint_path>

其中 <config_file> 是配置文件的路径,<checkpoint_path> 是预训练模型检查点的路径。

3. 应用案例和最佳实践

案例一:图像生成

使用DPDM生成图像时,您可以根据需要调整采样器设置。例如,为了获得最佳的FID值,您可以按照以下设置运行:

python main.py --mode eval --workdir <new_directory> --config configs/mnist_28/sample_eps_1.0.yaml --model.ckpt=<checkpoint_path> sampler.type=edm sampler.s_churn=100 sampler.s_min=0.05 sampler.s_max=50 sampler.num_steps=1000

案例二:差分隐私保护

在训练过程中,通过适当设置隐私预算(epsilon)和噪声添加机制,可以确保模型的输出满足差分隐私的要求。

4. 典型生态项目

DPDM项目是基于DDPM++架构构建的,它使用了StyleGAN3、torch_utils和dnnlib等库。这些库和工具都是开源社区中广泛使用和认可的,为DPDM提供了坚实的基础。

以上是DPDM开源项目的最佳实践教程,希望对您的研究和开发工作有所帮助。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
271
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
910
542
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4