差分隐私扩散模型(DPDM)开源项目教程
2025-05-17 20:23:52作者:羿妍玫Ivan
1. 项目介绍
差分隐私扩散模型(DPDM)是一种结合了差分隐私机制和深度学习技术的图像生成模型。它能够在保护数据隐私的同时,生成高质量的图像。本项目由NVIDIA公司发布,旨在为研究者和开发者提供一个强大的工具,用于探索差分隐私在深度学习中的应用。
2. 项目快速启动
环境准备
首先,确保您的系统已经安装了PyTorch 1.11.0和CUDA 11.3。然后,使用以下命令安装项目所需的依赖:
pip install -r requirements.txt
数据准备
根据需要生成的数据类型,创建相应的文件夹并下载数据集:
mkdir -p data/raw/
mkdir -p data/processed/
例如,对于CIFAR-10数据集,执行以下命令:
wget -P data/raw/ https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
python dataset_tool.py --source data/raw/cifar-10-python.tar.gz --dest data/processed/cifar10.zip
对于ImageNet数据集,首先下载ImageNet Object Localization Challenge数据,然后运行:
python dataset_tool.py --source=data/raw/imagenet/ILSVRC/Data/CLS-LOC/train --dest=data/processed/imagenet.zip --resolution=32x32 --transform=center-crop
预训练模型评估
在开始之前,您可能需要评估预训练模型的FID(Fréchet Inception Distance)指标。以下是一些评估命令的示例:
python precompute_data_mnist_fid_statistics.py
python precompute_data_mnist_fid_statistics.py --test
python precompute_data_mnist_fid_statistics.py --is_fmnist
模型训练
使用以下命令开始训练模型:
python main.py --mode train --workdir <new_directory> --config <dataset>
其中 <new_directory> 是您希望存储训练结果的目录,<dataset> 是您选择的配置文件。
模型评估
使用以下命令对模型进行评估:
python main.py --mode eval --workdir <new_directory> --config <config_file> --model.ckpt=<checkpoint_path>
其中 <config_file> 是配置文件的路径,<checkpoint_path> 是预训练模型检查点的路径。
3. 应用案例和最佳实践
案例一:图像生成
使用DPDM生成图像时,您可以根据需要调整采样器设置。例如,为了获得最佳的FID值,您可以按照以下设置运行:
python main.py --mode eval --workdir <new_directory> --config configs/mnist_28/sample_eps_1.0.yaml --model.ckpt=<checkpoint_path> sampler.type=edm sampler.s_churn=100 sampler.s_min=0.05 sampler.s_max=50 sampler.num_steps=1000
案例二:差分隐私保护
在训练过程中,通过适当设置隐私预算(epsilon)和噪声添加机制,可以确保模型的输出满足差分隐私的要求。
4. 典型生态项目
DPDM项目是基于DDPM++架构构建的,它使用了StyleGAN3、torch_utils和dnnlib等库。这些库和工具都是开源社区中广泛使用和认可的,为DPDM提供了坚实的基础。
以上是DPDM开源项目的最佳实践教程,希望对您的研究和开发工作有所帮助。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
448
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
452
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705