开源推荐 | 差分隐私下的联邦学习:一个客户端视角的实现
2024-05-20 19:58:48作者:毕习沙Eudora
在这个数字化时代,保护数据隐私已变得至关重要。Differentially Private Federated Learning: A Client-level Perspective 是一个由 SAP 团队开发的开源项目,它巧妙地融合了联邦学习和差分隐私两大领域,为安全的分布式机器学习提供了一个强大的解决方案。
1、项目介绍
该项目旨在模拟一个分散的学习环境,使多个客户端能够在不集中数据的情况下共同训练模型——这是联邦学习的核心理念。同时,它还引入了差分隐私的概念,以确保每个客户端的数据集在整个学习过程中得到充分的保护。这种方法特别关注对单个客户端数据集的整体隐私保护。
2、项目技术分析
项目基于 Python 和 TensorFlow 1.4.1 实现,采用了 Martin Abadi 等人在 2016 年提出的差分隐私算法作为隐私会计工具。它包含以下关键组件:
- Federated 学习框架:在保持数据本地化的同时,允许多个设备协同训练模型。
- Differential 隐私机制:通过噪声注入策略来隐藏特定数据贡献,确保个体数据点的隐私。
- Privacy Accountant:跟踪并估算学习过程中的隐私损失。
值得注意的是,对于拥有超过100个客户端的情况,项目的隐私代理部分尚未完全设置,需要手动配置或指定参数 m 和 sigma。
3、项目及技术应用场景
这个项目非常适合于那些希望在遵守严格隐私法规的同时进行大规模数据分析的场景,例如:
- 医疗保健:医生可以在本地训练模型,共享模型更新,但无需共享患者的个人健康信息。
- 金融行业:银行可以利用此技术进行信用评分模型的构建,而不泄露客户的具体财务记录。
- 智能设备:物联网(IoT)设备可以联合学习,改善预测精度,而无需将用户数据上传至云端。
4、项目特点
- 隐私优先:采用差分隐私技术,保证每个参与者的数据安全。
- 无中心化:数据保留在原地,只交换模型参数,减少潜在的安全风险。
- 可扩展性:尽管目前对超过100个客户端的设置需要手动调整,但基础架构设计支持更大的规模。
- 易于部署:提供方便的安装脚本和清晰的文档,便于快速上手和自定义。
如果你关心数据隐私并寻求在分布式环境中实施安全的深度学习,那么这个项目无疑是值得尝试的。通过它,你可以体验到前沿的技术,同时也为你的应用带来了一道坚固的隐私防护墙。立即行动,加入到差分隐私和联邦学习的探索之旅中来吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134