SpiceAI项目中的Databricks U2M OAuth访问令牌拦截支持解析
在SpiceAI项目中,团队最近实现了一项重要功能增强——支持从API请求中拦截Databricks U2M OAuth访问令牌。这项改进使得当HTTP和Flight API请求头中包含Databricks用户访问令牌和OAuth客户端ID时,这些凭证能够被自动应用于相关的Databricks组件,包括数据集、目录、嵌入和模型等。
功能背景与价值
在现代数据应用架构中,安全认证是核心需求之一。Databricks作为主流的数据平台,提供了多种认证方式,其中用户到机器(U2M)的OAuth流程能够为每个用户提供独立的认证上下文。SpiceAI此次增强的功能正是为了支持这种细粒度的认证模式。
传统做法中,应用通常使用单一的服务账号凭证访问Databricks资源,这既不符合最小权限原则,也难以追踪具体用户的操作。通过支持U2M OAuth,SpiceAI现在可以实现:
- 真正的多租户支持,每个用户使用自己的凭证访问数据
- 更精细的访问控制,遵循Databricks原有的权限体系
- 完整的操作审计能力,所有操作都能追溯到具体用户
技术实现方案
认证流程设计
SpiceAI为Databricks组件设计了三种认证模式:
- 个人访问令牌(PAT)模式:使用固定的
databricks_token参数 - 机器到机器(M2M)模式:同时配置
databricks_client_id和databricks_client_secret - 用户到机器(U2M)模式:仅配置
databricks_client_id,依赖请求头传递用户凭证
对于U2M模式,客户端需要在每个API请求中包含特定的认证头:
Spice-Databricks-Auth: <client_id>:<access_token>
核心架构改进
项目团队对SpiceAI运行时进行了多项架构调整:
-
请求上下文扩展:为DataFusion实现了请求上下文扩展机制,能够从请求头中提取U2M凭证并动态注册对应的Databricks数据集和目录。
-
Spark连接管理:针对Databricks Spark连接,现在会为每个请求创建新的连接实例,确保使用正确的用户凭证。
-
令牌提供者重构:改造了DatabricksU2MTokenProvider,使其直接从请求上下文中获取令牌,而非依赖缓存机制。
-
组件懒加载:所有使用U2M认证的组件改为懒加载模式,仅在首次收到对应凭证的请求时才进行初始化。
安全考量
在实现过程中,团队特别注重安全性设计:
- 使用Rust的secrety crate安全处理敏感凭证
- 严格限定令牌的作用范围,仅与当前请求关联
- 避免在全局状态中存储任何用户令牌
- 对无效配置提供明确的错误提示
配置示例与限制
以下是一个典型的U2M模式配置示例:
datasets:
- from: databricks:spiceai_sandbox.default.messages
name: messages
params:
databricks_endpoint: ${secrets:DATABRICKS_ENDPOINT}
databricks_cluster_id: ${secrets:DATABRICKS_CLUSTER_ID}
databricks_client_id: ${secrets:DATABRICKS_CLIENT_ID}
需要注意的限制包括:
- U2M认证的数据集不支持加速功能
- 必须确保所有相关API请求都包含正确的认证头
- 需要预先在Databricks中正确配置OAuth应用
实施影响与最佳实践
这项改进为SpiceAI用户带来了更灵活的认证选择,特别是在以下场景中特别有价值:
- 构建多租户SaaS应用时
- 需要严格区分用户权限的环境
- 要求完整审计追踪的合规场景
对于开发者而言,最佳实践包括:
- 在Databricks中正确配置OAuth应用
- 确保客户端能够获取并传递用户令牌
- 合理设计错误处理逻辑,应对令牌过期等情况
- 对于不需要用户级隔离的组件,考虑使用M2M模式提高性能
总结
SpiceAI对Databricks U2M OAuth的支持体现了项目对现代数据安全实践的重视。通过这项功能,开发者能够在保持SpiceAI强大数据处理能力的同时,满足企业级的安全和合规要求。这种细粒度的认证集成也为构建更复杂、更安全的数据应用打开了新的可能性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00