YOLOv4-Tiny TF2 安装与使用教程
2024-09-27 23:48:37作者:宣聪麟
一、项目目录结构及介绍
YOLOv4-Tiny的TensorFlow2实现提供了完整的训练、预测和评估流程。下面是其主要的目录结构及其简要说明:
yolov4-tiny-tf2/
├── README.md # 项目简介和快速指南
├── LICENCE # MIT许可协议
├── requirements.txt # 必需的Python包依赖列表
├── train.py # 训练脚本
├── predict.py # 预测脚本
├── get_map.py # 评估脚本,计算mAP
├── utils/
│ ├── ... # 辅助工具函数,如数据处理、解码等
├── nets/
│ ├── ... # 网络架构定义相关代码
├── model_data/
│ ├── yolov4_tiny.weights # 示例权重文件或训练后的权重存放位置
│ ├── coco_classes.txt # COCO数据集类别名
│ └── yolov4_tiny_config.json # 可选的配置文件,依赖于实现细节
├── VOCdevkit/ # VOC数据集相关文件夹(示例或用于训练)
└── ...
train.py: 启动训练的主程序,支持训练VOC或自定义数据集。predict.py: 根据已训练的模型进行对象检测预测。get_map.py: 对模型进行评估,计算平均精度(mAP)。
二、项目的启动文件介绍
训练启动
在开始训练之前,确保你已经配置好环境,并安装所有必需的依赖项。使用以下命令进行训练:
python train.py
默认情况下,这会开始训练VOC07+12数据集。你可以通过编辑train.py来定制训练配置,比如改变数据集路径、类别数目、网络超参数等。
预测启动
为了使用模型进行预测,你需要先指定模型的路径和类别文件路径。例如:
python predict.py --image=img/street.jpg --weights=logs/best.h5 --classes=model_data/my_classes.txt
这里,--weights指定的是训练好的权重文件,--classes则是你的类别列表。
评估启动
评估模型的性能,尤其是计算mAP,可以通过执行:
python get_map.py --model=logs/best.h5 --classes=model_data/my_classes.txt --dataset=voc --year=2007
这里的参数应替换为你的情况,特别是模型路径和类别文件路径。
三、项目的配置文件介绍
虽然该项目没有明确提到单独的配置文件,但核心配置分散在几个关键脚本中,特别是在train.py中。这里配置包括但不限于:
classes_path: 类别文件的路径,指定模型识别的目标类别。model_path: 训练权重保存或者加载的路径。input_shape: 输入图像的尺寸,默认是[416, 416],必须是32的倍数。confidence: 预测框的置信度阈值。nms_iou: 非极大值抑制(NMS)的IoU阈值。- 注意力机制(
phi)的选择和其他模型特定的参数也可能在配置中进行调整。
此外,数据集相关的处理通常在运行voc_annotation.py时通过参数进行配置,用来生成训练和验证所需的文件列表。
记得在操作前详细阅读每个脚本内的注释,以便深入理解每一步的含义和可能需要调整的选项。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137