YOLOv4-Tiny TF2 安装与使用教程
2024-09-27 01:13:20作者:宣聪麟
一、项目目录结构及介绍
YOLOv4-Tiny的TensorFlow2实现提供了完整的训练、预测和评估流程。下面是其主要的目录结构及其简要说明:
yolov4-tiny-tf2/
├── README.md # 项目简介和快速指南
├── LICENCE # MIT许可协议
├── requirements.txt # 必需的Python包依赖列表
├── train.py # 训练脚本
├── predict.py # 预测脚本
├── get_map.py # 评估脚本,计算mAP
├── utils/
│ ├── ... # 辅助工具函数,如数据处理、解码等
├── nets/
│ ├── ... # 网络架构定义相关代码
├── model_data/
│ ├── yolov4_tiny.weights # 示例权重文件或训练后的权重存放位置
│ ├── coco_classes.txt # COCO数据集类别名
│ └── yolov4_tiny_config.json # 可选的配置文件,依赖于实现细节
├── VOCdevkit/ # VOC数据集相关文件夹(示例或用于训练)
└── ...
train.py: 启动训练的主程序,支持训练VOC或自定义数据集。predict.py: 根据已训练的模型进行对象检测预测。get_map.py: 对模型进行评估,计算平均精度(mAP)。
二、项目的启动文件介绍
训练启动
在开始训练之前,确保你已经配置好环境,并安装所有必需的依赖项。使用以下命令进行训练:
python train.py
默认情况下,这会开始训练VOC07+12数据集。你可以通过编辑train.py来定制训练配置,比如改变数据集路径、类别数目、网络超参数等。
预测启动
为了使用模型进行预测,你需要先指定模型的路径和类别文件路径。例如:
python predict.py --image=img/street.jpg --weights=logs/best.h5 --classes=model_data/my_classes.txt
这里,--weights指定的是训练好的权重文件,--classes则是你的类别列表。
评估启动
评估模型的性能,尤其是计算mAP,可以通过执行:
python get_map.py --model=logs/best.h5 --classes=model_data/my_classes.txt --dataset=voc --year=2007
这里的参数应替换为你的情况,特别是模型路径和类别文件路径。
三、项目的配置文件介绍
虽然该项目没有明确提到单独的配置文件,但核心配置分散在几个关键脚本中,特别是在train.py中。这里配置包括但不限于:
classes_path: 类别文件的路径,指定模型识别的目标类别。model_path: 训练权重保存或者加载的路径。input_shape: 输入图像的尺寸,默认是[416, 416],必须是32的倍数。confidence: 预测框的置信度阈值。nms_iou: 非极大值抑制(NMS)的IoU阈值。- 注意力机制(
phi)的选择和其他模型特定的参数也可能在配置中进行调整。
此外,数据集相关的处理通常在运行voc_annotation.py时通过参数进行配置,用来生成训练和验证所需的文件列表。
记得在操作前详细阅读每个脚本内的注释,以便深入理解每一步的含义和可能需要调整的选项。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92