YOLOv4 自定义功能项目教程
2024-09-21 11:30:13作者:舒璇辛Bertina
1. 项目介绍
1.1 项目概述
yolov4-custom-functions 是一个基于 YOLOv4、YOLOv4-tiny、YOLOv3 和 YOLOv3-tiny 的开源项目,提供了多种自定义功能。这些功能包括对象计数、检测信息打印、检测结果裁剪保存、以及使用 Tesseract OCR 进行文本提取等。项目支持 TensorFlow、TFLite 和 TensorRT 框架,适用于各种应用场景,如对象检测、图像处理和视频分析。
1.2 主要功能
- 对象计数:统计图像或视频中检测到的对象总数或按类别统计。
- 信息打印:输出每个检测对象的类别、置信度和边界框坐标。
- 裁剪保存:将检测到的对象裁剪并保存为新图像。
- OCR 文本提取:使用 Tesseract OCR 从检测到的对象中提取文本。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 和必要的依赖库。可以通过以下命令安装依赖:
pip install -r requirements.txt
2.2 下载预训练模型
下载 YOLOv4 的预训练权重文件,并将其放置在 data 文件夹中:
wget https://drive.google.com/uc?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT -O data/yolov4.weights
2.3 运行对象检测
使用以下命令运行对象检测:
python detect.py --weights ./data/yolov4.weights --size 416 --model yolov4 --images ./data/images/kite.jpg
2.4 结果输出
检测结果将保存在 detections 文件夹中,并显示在终端上。
3. 应用案例和最佳实践
3.1 对象计数
在零售场景中,可以使用对象计数功能来统计货架上的商品数量:
python detect.py --weights ./data/yolov4.weights --size 416 --model yolov4 --images ./data/images/shelf.jpg --count
3.2 车牌识别
在交通监控中,可以使用 OCR 功能来识别车牌号码:
python detect.py --weights ./data/yolov4.weights --size 416 --model yolov4 --images ./data/images/car.jpg --plate
3.3 视频分析
在视频监控中,可以实时检测并裁剪出感兴趣的对象:
python detect_video.py --weights ./data/yolov4.weights --size 416 --model yolov4 --video 0 --crop
4. 典型生态项目
4.1 TensorFlow
TensorFlow 是一个广泛使用的机器学习框架,支持 YOLOv4 模型的训练和推理。
4.2 TensorRT
TensorRT 是 NVIDIA 提供的高性能推理引擎,适用于在 GPU 上加速 YOLOv4 模型的推理。
4.3 Tesseract OCR
Tesseract OCR 是一个开源的 OCR 引擎,可以与 YOLOv4 结合使用,从检测到的对象中提取文本信息。
通过这些生态项目的结合,yolov4-custom-functions 可以在各种应用场景中发挥更大的作用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1