HuggingFace Datasets库中数据集保存与加载的正确方式
2025-05-11 20:11:07作者:咎岭娴Homer
在使用HuggingFace的Datasets库处理数据时,许多开发者会遇到一个常见问题:保存的数据集在重新加载后大小不一致。本文将深入分析这一现象的原因,并详细介绍正确的数据集保存与加载方法。
问题现象
当开发者使用save_to_disk方法保存数据集后,如果错误地使用load_dataset而不是load_from_disk来加载数据,会导致加载后的数据集大小与原始数据集不符。例如:
- 保存时:训练集7642条,测试集1000条
- 错误加载后:训练集和测试集都只有1条
原因分析
这种现象源于Datasets库设计的两种不同数据加载机制:
load_from_disk:专门用于加载通过save_to_disk保存的二进制格式数据集load_dataset:用于从原始数据文件(如JSON、CSV等)创建新的数据集
当使用load_dataset加载二进制格式的数据目录时,库会尝试将其解释为原始数据文件目录,导致数据解析错误。
正确的保存与加载方式
方法一:使用专用二进制格式
# 保存数据集
dataset.save_to_disk("dataset_path")
# 加载数据集
from datasets import load_from_disk
dataset = load_from_disk("dataset_path")
这种方法保存的是经过优化的二进制格式,具有以下优势:
- 加载速度快
- 保留所有数据集特征和元数据
- 支持内存映射,节省内存
方法二:使用原始文件格式
如果希望数据集目录可以直接用load_dataset加载,需要按照特定结构组织原始数据文件:
dataset_dir/
├── train.jsonl
└── test.jsonl
保存代码示例:
import os
import shutil
os.makedirs("dataset_dir", exist_ok=True)
shutil.copy("train_data.jsonl", "dataset_dir/train.jsonl")
shutil.copy("test_data.jsonl", "dataset_dir/test.jsonl")
加载代码示例:
from datasets import load_dataset
dataset = load_dataset("dataset_dir")
两种方法的比较
| 特性 | 二进制格式(save_to_disk) | 原始文件格式 |
|---|---|---|
| 加载速度 | 快 | 慢 |
| 存储空间 | 较小 | 较大 |
| 可读性 | 二进制不可读 | 原始格式可读 |
| 兼容性 | 需特定方法加载 | 通用格式 |
| 元数据保留 | 完整保留 | 可能丢失 |
最佳实践建议
- 在训练流程中建议使用二进制格式,提高效率
- 当需要与其他工具共享数据时,可使用原始文件格式
- 大型数据集优先考虑二进制格式的内存映射优势
- 调试阶段可以使用原始文件格式便于检查数据
通过理解这些差异并选择适当的方法,开发者可以避免数据集大小不一致的问题,并优化数据处理流程的效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134